
AbCD: A Component-wise Adjustable Framework for Dynamic
Optimization Problems

Alexandre Mascarenhas
University of Tsukuba

Claus Aranha
University of Tsukuba

Yuri Lavinas
University of Tsukuba

ABSTRACT
DynamicOptimization Problems (DOPs) are characterized by changes
in the fitness landscape that can occur at any time and are com-
mon in real world applications. The main issues to be considered
include detecting the change in the fitness landscape and reacting
in accord. Over the years, several evolutionary algorithms have
been proposed to take into account this characteristic during the
optimization process. However, the number of available tools or
open source codebases for these approaches is limited, making
reproducibility and extensive experimentation difficult. To solve
this, we developed a component-oriented framework for DOPs
called Adjustable Components for Dynamic Problems (AbCD), in-
spired by similar works in the Multiobjective static domain. Using
this framework, we investigate components that were proposed in
several popular DOP algorithms. Our experiments show that the
performance of these components depends on the problem and the
selected components used in a configuration, which differs from
the results reported in the literature. Using irace, we demonstrate
how this framework can automatically generate DOP algorithm
configurations that take into account the characteristics of the prob-
lem to be solved. Our results highlight existing problems in the
DOP field that need to be addressed in the future development of
algorithms and components.

CCS CONCEPTS
• Computing methodologies→ Bio-inspired approaches.

KEYWORDS
Evolutionary computation, Evolutionary Dynamic Optimization,
Dynamic Optimization Problems, Component Design
ACM Reference Format:
Alexandre Mascarenhas, Claus Aranha, and Yuri Lavinas. 2023. AbCD: A
Component-wise Adjustable Framework for Dynamic Optimization Prob-
lems. In Lisbon ’23: GECCO 2023, July 15–19, 2023, Lisbon, PT . ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Dynamic Optimization Problems (DOPs) are problems where the
fitness landscape changes over time. Because of this, a solution can
have multiple fitness values as the search progresses. DOPs include

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Lisbon ’23, July 15–19, 2023, Lisbon, PT
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

vehicle routing, which changes depending on traffic conditions,
and team scheduling, which changes as task requests arrive. Many
real-world problems have dynamic characteristics [21], making the
study of DOPs crucial.

Different from static problems, evolutionary algorithms (EAs)
applied to DOPs have to adapt to changes in the fitness functions in
themiddle of the optimization process. So the EA needs to detect the
change to the fitness function and find the new optimum quickly.

Several EAs and variations have been proposed in the DOP
literature in recent years [4, 28–30, 32]. However, there is a lack of
analysis of individual algorithm components and their interactions.
One of the main reasons for this is the lack of source codes [31]. This
causes problems with reproducibility and diminishes our progress
and ability to build upon previous knowledge.

Moreover, the algorithms proposed in these works have been
presented and analyzed as a single entities. On the other hand,
a component-wise perspective of this class of EAs, such as what
has been done in the Multi-Objective EA domain recently [1, 9,
18], could lead us to a better understanding of the reasons behind
variations in the performance of different algorithms.

In this work, we propose a component-wise framework for DOPs,
which we call the AbCD: an Adjustable Component framework for
Dynamic Problems. Our goals with this framework are three-fold:
1) to make available an open-source tool that facilitate the repro-
ducible analysis of several DOP algorithms and experiments; 2)
to examine individual components from the literature, with their
individual impact and interaction with other component and prob-
lem classes; and 3) to automatically design new DOP algorithm
configuration, both manually and by automatically searching from
the available components and their parameters.

We validate the proposed framework by applying it on the Mov-
ing Peaks DOP Benchmark (MPB) [5]. We design two algorithm
configurations, one manually by the analysis individual compo-
nents, and another automatically by using Iterated Racing [20]. We
compare both configurations, as well as some algorithms from the
literature, using standard DOP metrics. The individual analysis of
the components also shows interesting insights about existing DOP
EAs, and point to promising directions of how to improve the state
of the art. 1

2 RELATEDWORKS
Many algorithms have been proposed for DOPs, many of them
based on PSO, such as FTmPSO [32], RPSO [14], CPSO [29], DSPSO [23],
and mQSO [4]. Their approach is to add dynamic components to
PSO that improve its performance in dynamic environments. In
particular, mQSO was one of the first to use dynamic components
to deal with fitness landscape changes over the optimization time,

1For reproducibility purposes, all the code and experimental scripts are available in
the supplementary materials.

https://orcid.org/0000-0003-2712-5340
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Lisbon ’23, July 15–19, 2023, Lisbon, PT A.Mascarenhas, C.Aranha, Y.Lavinas

while the other algorithms were strongly influenced by its ideas.
However, in spite of the large number of proposed algorithms, there
was little focus on creating and sharing tools to enable their use
and study, a problem that was well stated in 2013 [25], and still
placed as one of the main issues in DOPs by 2021 [31].

A very small number of works use a component-oriented ap-
proach to DOPs. For example, Xiong-Wen et al. show a framework
using six different strategies to make PSO and DE perform better
on DOPs [19]. Haluk et al. apply Hyper-heuristics to the Mem-
ory/Search algorithm to improve characteristics that are important
for DOPs, such as population diversity [26]. Daniel et al. defines
three strategies (Cooperative Evolutionary, Tracking multiple mov-
ing optima, and Resource allocation) that are applied to several
optimizers such as CMA-ES, jDE, DynDE and PSO [33]. Even in
these cases, the problems due to the absence of source code remain,
such as reproducibility and the difficulty of analyzing components
individually as well as their interaction effects, although the last
work in the previous paragraph discusses in detail the differences
between using or not certain strategies on the different algorithms.

3 PRELIMINARIES
3.1 Dynamic Optimization Terms
A environment change happens when the parameters of the objec-
tive function change in a dynamic problem. Let 𝑁𝐸 ∈ N be the total
number of evaluations in one run of an algorithm, an environment
change can occur at any evaluation 𝑛 ∈ [1, 𝑁𝐸] ⊂ N. Let 𝐶𝐸 ∈ N
be the total number of changes that can occur (𝐶𝐸 < 𝑁𝐸), each
𝑒 ∈ [1,𝐶𝐸] ⊂ N represents an environment in the run. 𝑁 (𝑒) ∈ N
is the total number of fitness evaluations on the 𝑒𝑡ℎ environment.

Subpopulations are often used in algorithms for dynamic op-
timization. Let 𝑝𝑜𝑝 ∈ N the total number of individuals in the
population, and 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 ∈ N the number of subpopulations, and
therefore, 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 < 𝑝𝑜𝑝 , and each 𝑠𝑢𝑏𝑝𝑜𝑝 ∈ [1, 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠] ⊂ N
represents a subpopulation.

So, the term 𝐼𝑖,𝑠𝑢𝑏𝑝𝑜𝑝 (𝑒, 𝑛) is the individual2 𝑖 of the subpopu-
lation 𝑠𝑢𝑏𝑝𝑜𝑝 at an environment 𝑒 at the evaluation 𝑛; The term
𝐼𝑏𝑒𝑠𝑡𝑖,𝑠𝑢𝑏𝑝𝑜𝑝 (𝑒, 𝑛) is used to refer to the position with the highest
fitness an individual 𝐼𝑖,𝑠𝑢𝑏𝑝𝑜𝑝 has had at the environment 𝑒 up to
evaluation 𝑛; The term 𝑆𝑏𝑒𝑠𝑡𝑠𝑢𝑏𝑝𝑜𝑝 (𝑒, 𝑛) is the best individual of the
subpopulation 𝑠𝑢𝑏𝑝𝑜𝑝 at the environment 𝑒 up to evaluation 𝑛; and
the term 𝑃𝑏𝑒𝑠𝑡 (𝑒, 𝑛) is used to refer to the best individual among
the entire population 𝑝𝑜𝑝 at the environment 𝑒 up to evaluation 𝑛.

3.2 Performance measures
The metrics implemented in the AbCD Framework are the most
frequently used in the field of dynamic optimization: the Offline
error (𝐸𝑜) [7] and the best error before a change (𝐸𝑏) [22, 27].

Offline error. This metric is calculated as the average of the best
results found up to a given number of evaluations. It can be used
both to generate an error curve along the evaluations and as a single
value at the end of all evaluations and runs. This measure has been

2To make the notation cleaner, sometimes the index 𝑠𝑢𝑏𝑝𝑜𝑝 of the subpopulation
and the parameter 𝑒 of the environment can be omitted. In these cases, it should be
understood as the subpopulation to which the individual belongs and the current
environment respectively.

used since the early research in DOPs and is still one of the most
commonly used measures in the literature.

𝐸𝑜 =
1

𝑁𝐸
′

𝑁𝐸
′∑︁

𝑛=1
|𝑓 (𝐺𝑂𝑝 (𝑛)) − 𝑓 (𝑃𝑏𝑒𝑠𝑡 (𝑛)) | (1)

where 𝑓 (𝐺𝑂𝑝 (𝑛)) is the fitness value of the global optimum in
the current environment at the𝑛𝑡ℎ fitness evaluation, 𝑓 (𝑃𝑏𝑒𝑠𝑡 (𝑛)) is
the fitness value of the best individual at the 𝑛𝑡ℎ fitness evaluation
and 𝑁𝐸

′
is the number of fitness evaluations so far. During the

execution of the algorithm 𝑁𝐸
′
is less than 𝑁𝐸, and at the end of

the execution, we have 𝑁𝐸
′
= 𝑁𝐸.

Best error before a change. Proposed in [27], but first used under
this name in [22], this metric is calculated by the simple average of
the best individuals found in each environment 𝑒 .

𝐸𝑏 =
1
𝐶𝐸

𝐶𝐸∑︁
𝑒=1
|𝑓 (𝐺𝑂𝑝 (𝑒)) − 𝑓 (𝑃𝑏𝑒𝑠𝑡 (𝑒)) | (2)

where 𝑓 (𝐺𝑂𝑝 (𝑒)) is the fitness value of the global optimum in
the 𝑒𝑡ℎ environment, 𝑓 (𝑃𝑏𝑒𝑠𝑡 (𝑒)) is the fitness value of the best
individual just before the 𝑒𝑡ℎ change happens and 𝐶𝐸 is the total
number of changes of environment.

4 AbCD: ADJUSTABLE COMPONENTS FOR
DYNAMIC PROBLEMS

In this work, we create the Adjustable Component framework for
Dynamic Problems based on commonly used components of dy-
namic evolutionary algorithms. The general functioning of the
framework can be seen in Algorithm 1. We designed AbCD follow-
ing the component-wise framework, similar to the protocols used
in the multiobjective domain [2, 9, 18].

Table 1: Dynamic components in the AbCD framework

Component Level Component Parameter(s)

Global component Multipopulation 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠

Exclusion 𝑟𝑒𝑥𝑐𝑙

Local component
Reevaluation 𝑆𝑏𝑒𝑠𝑡 None
Anti-convergence 𝑟𝑐𝑜𝑛𝑣
Local Search 𝑟𝑙𝑠 , 𝑒𝑡𝑟𝑦

Optimizer
ES 𝑟𝑐𝑙𝑜𝑢𝑑
PSO 𝜙1 , 𝜙2
Hybrid(PSO+ES) 𝜙1 , 𝜙2 , %𝐸𝑆𝑖𝑛𝑑 , 𝑟𝑐𝑙𝑜𝑢𝑑

The framework components are categorized according to how
they act on individuals in the population. The categories are Local
(L), when it involves only one subpopulation or Global (G) when it
involves more than one subpopulation3. The list of all components
in AbCD is shown in Table 1. Each component can be classified
given their functions: optimizer; change detection; convergence
detection; diversity control; and population division and manage-
ment [30].

3The letters (L) and (G) next to the component name will be used to identify the scope
in which the component operates. With the exception of optimizers because it is not a
dynamic component.

AbCD: A Component-wise Adjustable Framework for Dynamic Optimization Problems Lisbon ’23, July 15–19, 2023, Lisbon, PT

Algorithm 1 AbCD framework
1: Get a configuration
2: Initialize and evaluate the initial population 𝑝𝑜𝑝

3: Initialize the control list 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 with 𝐹𝑎𝑙𝑠𝑒 and size equal to
the number of subpopulations 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 .

4: Initialize the individual type list 𝐸𝑆𝑖𝑛𝑑 with percentage of 𝐸𝑆
individuals in 𝑝𝑜𝑝

5: 𝑃𝑏𝑒𝑠𝑡 ← 𝑏𝑒𝑠𝑡 of 𝑝𝑜𝑝
6: update(𝑝𝑜𝑝)
7: if Multipopulation is True then
8: 𝑝𝑜𝑝 = Multipopulation(𝑝𝑜𝑝) ⊲ (G)
9: end if
10: while Number of fitness evaluations is not reached do
11: if Multipopulation is True then
12: if Exclusion is True then
13: 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 = exclusion(𝑝𝑜𝑝) ⊲ (G)
14: end if
15: if Anti-Convergence is True then
16: 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 = antiConvergence(𝑝𝑜𝑝) ⊲ (L)
17: end if
18: end if
19: if Local-Search is True then
20: 𝑃𝑏𝑒𝑠𝑡 = localSearch(𝑃𝑏𝑒𝑠𝑡) ⊲ (G)
21: end if
22: for each subpopulation 𝑠𝑢𝑏𝑝𝑜𝑝 in 𝑝𝑜𝑝 do
23: 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 = reevaluate(𝑠𝑢𝑏𝑝𝑜𝑝) ⊲ Change detection
24: if 𝑠𝑢𝑏𝑝𝑜𝑝 in 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 then ⊲ (Lines 13, 16)
25: randomize(𝑠𝑢𝑏𝑝𝑜𝑝)
26: else ⊲ sub.pop not in 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 (Lines 3 or 23)
27: for each individual 𝑖 in 𝑠𝑢𝑏𝑝𝑜𝑝 do
28: if 𝑖 in 𝐸𝑆𝑖𝑛𝑑 then
29: 𝑖 = ES(𝑖 , 𝑠𝑢𝑏𝑝𝑜𝑝)
30: else
31: 𝑖 = PSO(𝑖 , 𝑠𝑢𝑏𝑝𝑜𝑝)
32: end if
33: update(𝑝𝑜𝑝)
34: end for
35: end if
36: end for
37: end while

4.1 Components
Below we give a description of each component and parameter
available in the framework.

4.1.1 Optimizers.

Particle swarm optimization (PSO). An established population-
based optimizer, largely used in static optimization [17]. Given
®𝑥𝑖 = (𝑥1𝑖 , 𝑥

2
𝑖
, ..., 𝑥𝐷

𝑖
) the position vector and ®𝑣𝑖 = (𝑣1𝑖 , 𝑣

2
𝑖
, ..., 𝑣𝐷

𝑖
) the

velocity vector of the individual 𝐼𝑖 , in a 𝐷 ∈ N dimensional space,
the update equations that govern the movement of individuals are
equations 3 and 4:

𝑣𝑖 (𝑛 + 1) = 𝜒{𝑣𝑖 (𝑛) + 𝜙1𝑅1𝑖 [𝑥𝑆𝑏𝑒𝑠𝑡 (𝑛) − 𝑥𝑖 (𝑛)]
+ 𝜙2𝑅2𝑖 [𝑥𝑖𝑏𝑒𝑠𝑡 (𝑛) − 𝑥𝑖 (𝑛)]}

(3)

®𝑥𝑖 (𝑛 + 1) = ®𝑥𝑖 (𝑛) + ®𝑣𝑖 (𝑛 + 1) (4)

where 𝑣𝑖 (𝑛) is 𝑑𝑡ℎ dimension of the 𝑖𝑡ℎ individual velocity at
the evaluation 𝑛, 𝑥𝑆𝑏𝑒𝑠𝑡 (𝑛) is the 𝑑𝑡ℎ dimension of the position of
the best individual in its subpopulation at the evaluation 𝑛, 𝑥𝑖𝑏𝑒𝑠𝑡
is the 𝑑𝑡ℎ dimension of the best position of the individual 𝑖𝑡ℎ at
the evaluation 𝑛, 𝑅1𝑖 and 𝑅2𝑖 are uniformly generated random
numbers in the range of [0,1], 𝜒 is the constriction factor to works
like friction for the individual’s velocity and 𝜙1 and 𝜙2 are the
social and individual acceleration coefficients respectively. For more
information, see [15, 16].

Evolutionary strategy (ES). A powerful metaheuristic, concerning
the fitness function [24]. Given ®𝑥𝑖 = (𝑥1

𝑖
, 𝑥2

𝑖
, ..., 𝑥𝐷

𝑖
) the position

vector of the individual 𝐼𝑖 in a 𝐷 ∈ N dimensional space, the update
equation that controls the sampling of new individuals is 5:

𝑥𝑖 (𝑛 + 1) = 𝑥𝑆𝑏𝑒𝑠𝑡 (𝑛) + 𝑅𝑖𝑟𝑐𝑙𝑜𝑢𝑑 (5)

where 𝑥𝑆𝑏𝑒𝑠𝑡 (𝑛) is the 𝑑𝑡ℎ dimension of the position of the best
individual of the subpopulation in which 𝐼𝑖 belongs, 𝑅𝑖 is a uni-
formly generated random number in the range of [0,1] and 𝑟𝑐𝑙𝑜𝑢𝑑
is the maximum radius for sampling around 𝑥𝑆𝑏𝑒𝑠𝑡 (𝑛).

4.1.2 Change detection.

Reevaluate 𝑆𝑏𝑒𝑠𝑡 (L). Is the method used in the change detection
component the reevaluation of the 𝑆𝑏𝑒𝑠𝑡 [4]. The 𝑆𝑏𝑒𝑠𝑡 of each
subpopulation is reevaluated every generation, and if the new value
is different from the previous one, we consider that there has been
a change where this subpopulation is and all individuals in this
subpopulation are re-evaluated. The pseudo-code of the Change
detection component is shown on Algorithm 2.

Algorithm 2 Reevaluate 𝑆𝑏𝑒𝑠𝑡
Require: subpopulation 𝑠𝑢𝑏𝑝𝑜𝑝 and control list 𝑟𝑒𝑠𝑡𝑎𝑟𝑡
1: 𝑆𝑏𝑒𝑠𝑡 ← best of 𝑠𝑢𝑏𝑝𝑜𝑝
2: sensor← evaluate(𝑆𝑏𝑒𝑠𝑡)
3: if 𝑠𝑒𝑛𝑠𝑜𝑟 ! = 𝑓 (𝑆𝑏𝑒𝑠𝑡) then ⊲ If different, a change occurred
4: evaluate(𝑠𝑢𝑏𝑝𝑜𝑝) ⊲ Reevaluate the entire subpopulation
5: 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 [𝑠𝑢𝑏𝑝𝑜𝑝] ← 𝐹𝑎𝑙𝑠𝑒

6: end if
7: Return restart

4.1.3 Diversity control.

Exclusion (G). This method is used to maintain diversity in the
search space at a global level [4]. Themethod is applied to every pair
of subpopulations, and the best individual of each subpopulation
𝑆𝑏𝑒𝑠𝑡 is used to represent them. When the Euclidean distance of the
representative individuals is smaller than a defined radius, 𝑟𝑒𝑥𝑐𝑙 ,
all individuals from the subpopulation with the individual with
the worse fitness are restarted randomly. The pseudo-code of the
Exclusion component is shown on Algorithm 3.

Lisbon ’23, July 15–19, 2023, Lisbon, PT A.Mascarenhas, C.Aranha, Y.Lavinas

Algorithm 3 Exclusion
Require: population 𝑝𝑜𝑝 and control list 𝑟𝑒𝑠𝑡𝑎𝑟𝑡
1: for each pair of subpopulations 𝑠𝑢𝑏𝑝𝑜𝑝1, 𝑠𝑢𝑏𝑝𝑜𝑝2 in 𝑝𝑜𝑝 do
2: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← euclideanDistance(𝑆𝑏𝑒𝑠𝑡𝑠𝑢𝑏𝑝𝑜𝑝1 , 𝑆𝑏𝑒𝑠𝑡𝑠𝑢𝑏𝑝𝑜𝑝2)
3: if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑟𝑒𝑥𝑐𝑙 then
4: if f(𝑆𝑏𝑒𝑠𝑡𝑠𝑢𝑏𝑝𝑜𝑝1) < f(𝑆𝑏𝑒𝑠𝑡𝑠𝑢𝑏𝑝𝑜𝑝2) then
5: 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 [𝑠𝑢𝑏𝑝𝑜𝑝1] ← True
6: else
7: 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 [𝑠𝑢𝑏𝑝𝑜𝑝2] ← True
8: end if
9: end if
10: end for
11: Return 𝑟𝑒𝑠𝑡𝑎𝑟𝑡

Algorithm 4 Local Search
Require: individual 𝑃𝑏𝑒𝑠𝑡
1: for 1 to 𝑒𝑡𝑟𝑦 do
2: 𝑃

′

𝑏𝑒𝑠𝑡
← 𝑃𝑏𝑒𝑠𝑡

3: for each dimension 𝑑 in 𝑃
′

𝑏𝑒𝑠𝑡
do

4: 𝑥
′𝑑
𝑃𝑏𝑒𝑠𝑡

= Equation6(𝑃
′

𝑏𝑒𝑠𝑡
)

5: end for
6: if 𝑓 (𝑃𝑏𝑒𝑠𝑡) < 𝑓 (𝑃 ′

𝑏𝑒𝑠𝑡
) then

7: 𝑓 (𝑃𝑏𝑒𝑠𝑡) ← 𝑓 (𝑃 ′
𝑏𝑒𝑠𝑡
)

8: end if
9: end for
10: Return 𝑃𝑏𝑒𝑠𝑡

Local search (G). This component is used to intensify the search
around 𝑃𝑏𝑒𝑠𝑡 [32]. A number of 𝑒𝑡𝑟𝑦 new individuals at an 𝑟𝑙𝑠
radius around the 𝑃𝑏𝑒𝑠𝑡 are visited. The individual with the best
fitness, including 𝑃𝑏𝑒𝑠𝑡 , becomes the new 𝑃𝑏𝑒𝑠𝑡 . Given ®𝑥𝑃𝑏𝑒𝑠𝑡 =

(𝑥1
𝑃𝑏𝑒𝑠𝑡

, 𝑥2
𝑃𝑏𝑒𝑠𝑡

, ..., 𝑥𝐷
𝑃𝑏𝑒𝑠𝑡
) the position of the individual 𝑃𝑏𝑒𝑠𝑡 in a

𝐷 ∈ N dimensional space, the update equation that controls the
sampling of new individuals is 6:

𝑥𝑃𝑏𝑒𝑠𝑡 (𝑛 + 1) = 𝑥𝑃𝑏𝑒𝑠𝑡 (𝑛) + 𝑅𝑖𝑟𝑙𝑠 (6)

where 𝑥𝑃𝑏𝑒𝑠𝑡 (𝑛) is the 𝑑𝑡ℎ dimension of the position of the best
individual of the entire population, 𝑅𝑖 is a uniformly generated
random number in the range of [0,1] and 𝑟𝑙𝑠 is the maximum radius
at which the sample will be taken around the 𝑥𝑃𝑏𝑒𝑠𝑡 (𝑛). The pseudo-
code of the LS component is shown on Algorithm 4.

Anti-convergence (L). This method deals with the convergence
of subpopulations [4]. If the distance between two individuals, for
all dimensions, is less than 𝑟𝑐𝑜𝑛𝑣 , the subpopulation has converged.
If all subpopulations have converged, the one where the 𝑆𝑏𝑒𝑠𝑡 indi-
vidual has the lowest fitness, is restarted. The pseudo-code of the
Anti-Convergence component is shown on Algorithm 5.

4.1.4 Population division and management.

Multi-population (G). Inspired by multi-population approaches
[3, 4, 6], we select this component to increase diversity in the search
space by dividing the population 𝑝𝑜𝑝 into 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 subpopulations.

Algorithm 5 Anti-convergence
Require: population 𝑝𝑜𝑝 and control list 𝑟𝑒𝑠𝑡𝑎𝑟𝑡
1: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝑇𝑟𝑢𝑒

2: 𝑆𝑏𝑒𝑠𝑡𝑤𝑜𝑟𝑠𝑡 .𝑠𝑢𝑏
← 𝐼𝑛𝑓 ⊲ Highest fitness value for an individual

3: for each subpopulation 𝑠𝑢𝑏𝑝𝑜𝑝 in 𝑝𝑜𝑝 do
4: 𝑆𝑏𝑒𝑠𝑡 ← best of 𝑠𝑢𝑏𝑝𝑜𝑝
5: for each pair of individuals in 𝑠𝑢𝑏𝑝𝑜𝑝 do
6: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = Euclidean distance per dimension
7: 𝑚𝑎𝑥.𝑑𝑖𝑠𝑡 = Get the maximum value of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
8: if 𝑚𝑎𝑥.𝑑𝑖𝑠𝑡 > 𝑟𝑐𝑜𝑛𝑣 then
9: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 ⊲ The 𝑠𝑢𝑏𝑝𝑜𝑝 didn’t converge
10: end if
11: end for
12: if 𝑓 (𝑆𝑏𝑒𝑠𝑡𝑤𝑜𝑟𝑠𝑡 .𝑠𝑢𝑏

) < 𝑓 (𝑆𝑏𝑒𝑠𝑡𝑠𝑢𝑏𝑝𝑜𝑝) then
13: 𝑆𝑏𝑒𝑠𝑡𝑤𝑜𝑟𝑠𝑡 .𝑠𝑢𝑏

← 𝑆𝑏𝑒𝑠𝑡𝑠𝑢𝑏𝑝𝑜𝑝
14: end if
15: end for
16: if 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝑖𝑠 𝑇𝑟𝑢𝑒 then ⊲ All 𝑠𝑢𝑏𝑝𝑜𝑝𝑠 converged
17: 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 [𝑆𝑏𝑒𝑠𝑡𝑤𝑜𝑟𝑠𝑡 .𝑠𝑢𝑏

] ← 𝑇𝑟𝑢𝑒 ⊲ Restart the worst
18: end if
19: Return 𝑟𝑒𝑠𝑡𝑎𝑟𝑡

Individuals from each subpopulation do not interact with individu-
als from another subpopulation directly.

5 DESIGN OF DYNAMIC EVOLUTIONARY
ALGORITHMS

Herewe show how to use AbCD to create new configurations of evo-
lutionary algorithms for DOPs. We follow two different approaches:
a manual design, where we select the components one by one, and
an automatic design, where we use irace to find a well-performing
configuration of the components altogether.

5.1 Manual Design
Assuming independence among the components, we do the manual
configuration to select a configuration of the components and their
parameterization that performances well in the problems, for each
optimizer. First, we search for the best parameter in a wide range
of values for each component independently. We start with the
multipopulation, since some of the other components require more
than one sub-population. Then we select one component and we
search for its best parameterization. We repeat this process for
each component. Finally, we combine these best configuration of
components to create the 𝐴𝑏𝑐𝐷𝑚𝑎𝑛 . To evaluate performance, we
use the offline error (𝐸𝑜).

The range of parameters was decided given the most used values
used in the literature. For 𝜒 , 𝜙1 and 𝜙2, the parameters of PSO, as
well for the exclusion, anti-convergence, and local search, we follow
the suggestions from Blackwell and Branke [4, 32]. The range of
the 𝑟𝑐𝑙𝑜𝑢𝑑 parameter of ES was selected to be in the same interval
as the radii of the exclusion and anti-convergence components.

The nomenclature of the configuration generated by the frame-
work is 𝐴𝑏𝐶𝐷𝐸𝑆%, where % indicates the percentage of individuals
in the population that uses ES as the optimizer, and the rest of the
individuals use PSO. Thus, the 𝐴𝑏𝐶𝐷𝐸𝑆100 configuration indicates

AbCD: A Component-wise Adjustable Framework for Dynamic Optimization Problems Lisbon ’23, July 15–19, 2023, Lisbon, PT

that 100% of the individuals use the ES optimizer and the 𝐴𝑏𝐶𝐷𝐸𝑆0
configuration indicates that no individual use ES, that is, all are
optimized by PSO. For all configuration explored, see Table 2.

Table 2: AbCD optimizers and the percentage of solutions in
a population following PSO or ES.

Optimizers PSO Individuals ES Individuals
𝑃𝑆𝑂 (𝐴𝑏𝐶𝐷𝐸𝑆0) 100% 0%

𝐴𝑏𝐶𝐷𝐸𝑆25 75% 25%
𝐴𝑏𝐶𝐷𝐸𝑆50 50% 50%
𝐴𝑏𝐶𝐷𝐸𝑆75 25% 75%

𝐸𝑆 (𝐴𝑏𝐶𝐷𝐸𝑆100) 0% 100%

To evaluate the components as well as test the generated al-
gorithms, the Moving Peaks Benchmark (MPB) was used, as it
is available from the Python library DEAP [13]. This benchmark
has several parameters configurations, for example, the number
of peaks, frequency of change, and severity of the change, among
others. Among the predefined scenarios,we set MPB to the scenario
2, as it is frequently used [4, 21, 29, 32, 34].

5.2 Automatic Design
Assuming dependence among the components, we use irace [20]
to automatically design an 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 configuration based on the
components available in our framework. We run irace with its
default settings, except for the number of elite configurations tested,
which we increase from 1 to 7, following Campelo et al. work [9].
We run irace with a budget of 30000 runs. In a preliminary run
of irace, we found that we were facing a heterogeneous scenario,
and thus adjusted the configuration and increased the number of
instances executed before doing a statistical test to 10, the number
of instances evaluated between elimination tests to 5, and increase
the number of new instances executed in each iteration to 5 as
recommended in irace’s user guide4 and by Souza et al. [11]. Here,
we use the offline error (𝐸𝑜) as the training metric for evaluating
the instances generated automatically by irace. We chose to fix the
parameter 𝜒 = 1 to reduce the number of parameters of PSO and
the range of 𝜙1 and 𝜙2 was based on the work of Camacho-Villalón
et al.[8]. Finally, each configuration runs for 500000 evaluations.

We use the same set of theMPB as in the manual design. Since we
aim to find good configurations to perform well in many problems,
we use more instances than those used in the manual design. These
instances show vary not only the positions of the optimal points
change but also the dimensions and the number of peaks.

6 EXPERIMENTS AND RESULTS
For all the experiments in this section, the metrics presented are
calculated over the results of 50 runs, each one with 500000 fitness
evaluation. Only the change detection component is always enabled
during all experiments, as it is necessary in any DOP. The metrics
used to evaluate the configurations are the offline error (𝐸𝑜) and the
best error before a change (𝐸𝑏). We only use the 𝐸𝑏 as a tiebreaker.

4https://mlopez-ibanez.github.io/irace/irace-package.pdf, accessed 17th January 2023

6.1 Baseline
As a baseline, we configure PSO and ES in the AbCD framework.
The PSO parameters values used are 𝜒 = 0.729, 𝜙1 = 2.05, and
𝜙2 = 2.05, these are commonly used in the literature, and more
details about these values can be seen in [10, 12].

Now, for the ES, and hybrid variations, we set the parame-
ter value 𝑟𝑐𝑙𝑜𝑢𝑑 experimentally. We looked at the performance
of 𝐴𝑏𝐶𝐷𝐸𝑆25, 𝐴𝑏𝐶𝐷𝐸𝑆50, 𝐴𝑏𝐶𝐷𝐸𝑆75 and 𝐸𝑆 in terms of variable
values of 𝑟𝑐𝑙𝑜𝑢𝑑 in the MPB set, as can be seen in the Figure 1. From
this Figure, we can see that there is a drop in the offline error when
𝑟𝑐𝑙𝑜𝑢𝑑 increases from zero to very small values, followed by an
increase in the metric values from values above 0.1.

Figure 1: Offline error of the𝐴𝑏𝐶𝐷𝐸𝑆25, 𝐸𝑆50, 𝐸𝑆75, 𝐸𝑆 optimiz-
ers along the variation of the radius 𝑟𝑐𝑙𝑜𝑢𝑑 .

6.2 Manual Design
To design the Manual Designed AbCD configuration, 𝐴𝑏𝐶𝐷𝑚𝑎𝑛 ,
we use the settings of MPB shown in Table 3, and the range of
values for each component are shown in Table 4. For the design
of the 𝐴𝑏𝐶𝐷𝑚𝑎𝑛 , each component is evaluated individually, as the
only addition to the main base algorithm, for each optimizers. The
number of individuals in a population is fixed in 𝑝𝑜𝑝 = 100, a
commonly used value from the literature. The value 𝑒𝑡𝑟𝑦 = 20 for
the Local search component was chosen based on the experiments
in [32].

Table 3: MPB settings for baseline and manual design

Parameter Setting
Peak function 𝑐𝑜𝑛𝑒 ()[13]
Number of peaks 10
Number of dimensions 10
Peak heights ∈ [30, 70]
Peak widths ∈ [1, 12]
Change frequency Every 5000 evaluations
Change severity 𝑠 1
Correlation coefficient _ 0

Lisbon ’23, July 15–19, 2023, Lisbon, PT A.Mascarenhas, C.Aranha, Y.Lavinas

Table 4: Components search space for manual design

Components Domain
Optimizer 𝑃𝑆𝑂,𝐴𝑏𝐶𝐷𝐸𝑆25,𝐸𝑆50 ,𝐸𝑆75 , 𝐸𝑆
Multipopulation 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 = 1, 5, 10, 25, 50, 100
Exclusion 𝑟𝑒𝑥𝑐𝑙 ∈ [0, 50]
Anti-convergence 𝑟𝑐𝑜𝑛𝑣 ∈ [0, 50]
Local Search 𝑟𝑙𝑠 ∈ [0, 50] and 𝑒𝑡𝑟𝑦 = 20

Figure 2: Offline error of the 𝑃𝑆𝑂 , 𝐸𝑆25, 𝐸𝑆50, 𝐸𝑆75, 𝐸𝑆 optimiz-
ers given different numbers of subpopulation 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 .

We first analyze the multipopulation component. Figure 2 shows
the results of different sub-polulations. Increasing the sub-population
size deteriorates the performance of the AbCD variants. This result
is confirmed in Table 5, and that for the pair instances and config-
urations tested, having 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 = 1, or just a single population,
leads to the best results in terms of offline error.

That said, most of the dynamic components (with the excep-
tion of Local search) depend on the configurations using multi-
populations. Therefore, for the setting of the parameters of such
components, we follow the suggested value of the number of sub-
populations being equal to the number of peaks in the problem,
𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 = 10, [4] .

Figure 3 show how the performance of different AbCD optimizers
is affected by the parameters of the different dynamic components
(we chose these examples because they represent well the behavior
of the configurations we studied here). Interestingly, we can only
observe small differences for low values of radii while higher values
lead to higher error values. Given the limited positive impact of the
dynamic components, we select the 𝐴𝑏𝐶𝐷𝑚𝑎𝑛 as the 𝐴𝑏𝐶𝐷𝐸𝑆75
without dynamic components as can be seen in Table 8.

6.3 Automatic Design
To design the automatic AbCD configuration (𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜) we use
different settings of MPB for training and testing, as shown in Table
6. The range of values for each component are shown in Table 7.

Figure 4 shows the frequency of the different choices of com-
ponents and parameters after the tuning is performed. There is a
consensus over the components and parameters in terms of elite

(a) 𝐴𝑏𝐶𝐷𝐸𝑆25

(b) 𝐴𝑏𝐶𝐷𝐸𝑆50

Figure 3: Offline error of different 𝐴𝑏𝐶𝐷 optimizers with
𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠=10 and 𝑟𝑐𝑙𝑜𝑢𝑑 = 0.05 given variations of radii values
of the components: exclusion 𝑟𝑒𝑥𝑐𝑙 , anti-convergence 𝑟𝑐𝑜𝑛𝑣
and local-Search 𝑟𝑙𝑠 .

configurations returned by irace. This suggests that these configura-
tions have at least an adequate overall performance in the instances
used during the configuration process.

Figure 5 shows the final elite configurations (last iteration),
where each line in the plot represents one configuration. We can
see from the distribution of the parameter values, that most of the
final elite configurations are similar, and differ only on the number
of sub-populations and the use of anti-convergence.

We were surprised by the 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 configuration in terms of
the number of sub-populations and the Local search values. Having
a high sub-population size seems to benefit 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 by reducing
the interaction among the individuals in the population, probably
allowing 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 to explore more peaks. Also, this configuration

AbCD: A Component-wise Adjustable Framework for Dynamic Optimization Problems Lisbon ’23, July 15–19, 2023, Lisbon, PT

Table 5: Offline error (and standard deviation) of optimizers varying the number of subpopulations 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 , with 𝑟𝑐𝑙𝑜𝑢𝑑 = 0.05

𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 PSO 𝐴𝑏𝐶𝐷𝐸𝑆25 𝐴𝑏𝐶𝐷𝐸𝑆50 𝐴𝑏𝐶𝐷𝐸𝑆75 ES
1 19.4187(0.0248) 18.8832(0.0186) 18.7498(0.0232) 18.7176(0.0320) 19.0403(0.1172)
5 20.0468(0.0287) 19.6459(0.0236) 19.4912(0.281) 19.2591(0.9935) 22.06689(1.0232)
10 20.1826(1.3809) 19.7556(1.2184) 19.5932(1.1950) 19.5737(1.3541) 24.5242(2.5880)
20 25.2869(2.0204) 19.5041(2.1427) 19.5563(2.1798) 19.9342(2.1658) 41.5702(4.6395)
25 33.9557(3.7422) 19.5660(2.4690) 19.8819(2.4329) 24.4162(1.9479) 54.6549(9.3672)

Table 6: MPB settings for automatic training and testing

Parameter training testing
Peak function 𝑐𝑜𝑛𝑒 () 𝑐𝑜𝑛𝑒 ()

Peaks 8, 10 9, 11
Dimensions 8, 10 7, 9
Peak heights ∈ [30, 70] ∈ [30, 70]
Peak widths ∈ [1, 12] ∈ [1, 12]

Change frequency Every 5000 evals Every 5000 evals
Change severity 𝑠 1, 2 1.5, 2.5
Correlation _ 0 0

Table 7: Components search space for automatic design

Components Domain
Population size 100, 150, 200, 300

Optimizer

𝑃𝑆𝑂 → 𝜙1 ∈ [0, 2.50], 𝜙2 ∈ [0, 2.50]
𝐸𝑆 → 𝑟𝑐𝑙𝑜𝑢𝑑 ∈ [0, 5]

𝐴𝑏𝐶𝐷𝐸𝑆% →

% = 25, 50, 75
𝜙1 ∈ [0, 2.50], 𝜙2 ∈ [0, 2.50]
𝑟𝑐𝑙𝑜𝑢𝑑 ∈ [0, 5]

Multipopulation True, 𝑁𝑠𝑢𝑏𝑝𝑜𝑝𝑠 = 10, 25, 50, 100
False, not used

Exclusion True, 𝑟𝑒𝑥𝑐𝑙 ∈ [0, 80]
False, not used

Anti-convergence True, 𝑟𝑐𝑜𝑛𝑣 ∈ [0, 80]
False, not used

Local Search True, 𝑟𝑙𝑠 ∈ [0, 80], 𝑒𝑡𝑟𝑦 ∈ [1, 50]
False, not used

100 150 200

Pop. size

values

F
re

qu
en

cy

0

1 10 25 50

Nsubpop

values

F
re

qu
en

cy

0

0 1

Exclusion

values

F
re

qu
en

cy

0

0 0.25 0.5 0.75 1

ES %

values

F
re

qu
en

cy

0

0 1

Local Search

values

F
re

qu
en

cy

0

0 1 <NA>

Anti convergence

values

F
re

qu
en

cy

0

RCLOUD

values

D
en

si
ty

0 1 2 3 4 50.
0

φ1

values

D
en

si
ty

0.0 1.0 2.00.
0

φ2

values

D
en

si
ty

0.0 1.0 2.00.
0

REXCL

values

D
en

si
ty

0 20 40 60 800.
00

0

RCONV

values

D
en

si
ty

0 20 40 60 800.
00

0

RLS

values

D
en

si
ty

0 1 2 3 4 50.
0

etry

values

D
en

si
ty

0 10 20 30 40 500.
00

Figure 4: irace output with the frequency of the different
choice of components and their parameters.

has Local search with a high 𝑟𝑙𝑠 value and a small number of itera-
tions (𝑒𝑡𝑟𝑦 = 2), which suggests that Local search is used to explore
a wider area near the best individual.

When we compare the results on 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 with 𝐴𝑏𝐶𝐷𝑚𝑎𝑛 we
see some consensus for most of the components. For example, both

Figure 5: Elite configurations from the irace output. Each
line in the plot represents one configuration.

configurations use 75% ES individuals (with 25% being PSO individ-
uals). Also, they don’t use the dynamic components exclusion and
anti-convergence, as can be seen in Table 8. The PSO and ES param-
eters are slightly different. Moreover, the most divergent choices
of components are the number of sub-populations, in different ex-
tremes, and the presence of local search in𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 . Although we
can see a difference in the use of the local search component, irace
selected a small number of tries, which suggests that the impact of
this component is likely to be small. On the other hand, the reasons
behind the contrary number of sub-populations needs more work.

6.4 Results
Here compare PSO, ES, mQSO, 𝐴𝑏𝐶𝐷𝑚𝑎𝑛 , and 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜using the
offline error (𝐸𝑜) and the error before a change (𝐸𝑏). The configu-
rations can be seen in Table 8. We evaluate them in five instances,
generated under the MPB scenario 2 setting. We refer to them first
by their dimension, then by the number of peaks, and finally by the
severity. For example, the 5D-10P-1s instance with 5 dimensions,
10 peaks, and severity 1. We show the results in Table 9.

For lower dimensions, 5D-10P-1s instance, we can see that the
performance of the configurations can be divided into two groups,
those with a good performance value, with mQSO and 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 ,
and the second group with the other configurations. The perfor-
mance of both mQSO and 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 deteriorates as the number
of dimensions increases, although 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 keeps a good overall
performance.

Lisbon ’23, July 15–19, 2023, Lisbon, PT A.Mascarenhas, C.Aranha, Y.Lavinas

Table 8: Configurations generated with AbCD framework

Optimizer Multipopulation Exclusion Local search Anti-Convergence
PSO→

{
𝜒 = 0.729, 𝜙1 = 2.05, 𝜙2 = 2.05 Disabled Disabled Disabled Disabled

ES→
{
𝑟𝑐𝑙𝑜𝑢𝑑 = 0.05 Disabled Disabled Disabled Disabled

mQSO [4]→
{
𝜒 = 0.729, 𝜙1 = 2.05, 𝜙2 = 2.05
𝑟𝑐𝑙𝑜𝑢𝑑 = 1

𝑁𝑠𝑢𝑏𝑝𝑜𝑝 = 10 𝑟𝑒𝑥𝑐𝑙 = 22.9 Disabled 𝑟𝑐𝑜𝑛𝑣 = 39.7

𝐴𝑏𝐶𝐷𝑚𝑎𝑛 →
{
% = 75, 𝑟𝑐𝑙𝑜𝑢𝑑 = 0.05
𝜒 = 0.729, 𝜙1 = 2.05, 𝜙2 = 2.05

Disabled Disabled Disabled Disabled

𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 →
{
% = 75, 𝑟𝑐𝑙𝑜𝑢𝑑 = 0.2
𝜒 = 1, 𝜙1 = 1.38, 𝜙2 = 2.24

𝑁𝑠𝑢𝑏𝑝𝑜𝑝 = 25 Disabled
{
𝑟𝑙𝑠 = 2.9
𝑒𝑡𝑟𝑦 = 2

Disabled

Table 9: 𝐸𝑜 and 𝐸𝑏 results of the different configurations

Algorithm 5D-10P 8D-10P 10D-10P
𝑃𝑆𝑂 𝐸𝑜 = 15.12(1.62) 𝐸𝑜 = 13.01(2.43) 𝐸𝑜 = 19.42(0.03)
𝐸𝑆 𝐸𝑜 = 14.63(1.71) 𝐸𝑜 = 13.17(2.71) 𝐸𝑜 = 19.04(0.12)

𝑚𝑄𝑆𝑂 𝐸𝑜 = 7.97(1.21) 𝐸𝑜 = 13.64(0.66) 𝐸𝑜 = 23.36(0.89)
𝐴𝑏𝐶𝐷𝑚𝑎𝑛 𝐸𝑜 = 14.78(1.71) 𝐸𝑜 = 12.80(2.53) 𝐸𝑜 = 18.72(0.03)
𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 𝐸𝑜 = 6.37(0.71) 𝐸𝑜 = 11.10(1.23) 𝐸𝑜 = 19.90(2.49)

This good performance of 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 comes without a surprise
since irace searched for a configuration that would perform well
in most of the instances. Interestingly, 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 was designed for
instances with high dimensions, but it could extrapolate its good
performance to an easier problem. We ask ourselves if the same
would be true for more challenging instances.

A more interesting result is that dimensionality has a big impact
on the performance of the configurations. For example, mQSO is
among the best in the problem with the lowest dimension and
the worse as the number of dimensions increases. This goes in
agreement with the results of the manual and automatic design,
which found that using the main components of mQSO, exclusion,
and anti-convergence, lead to a reduction in the performance of
the configurations. We believe one of the reasons for this loss in
performance in high dimensions could be given that these two
components use the Euclidean distance and a more suited metric
for distances in many dimensions should be considered in future
works.

Another remarkable result is that a recombination of commonly
used evolutionary algorithms in static problems can lead to good dy-
namic configurations, as shown by the increments in performance
by the configurations 𝐴𝑏𝐶𝐷𝑚𝑎𝑛 and 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 . This suggests that
incorporating even more effective evolutionary algorithms into the
AbCD framework would benefit the dynamic community.

7 CONCLUSION
The aim of this work was to introduce a new component-wise based
on commonly used operators in DOPs, the Adjustable Component
framework for Dynamic Problems. The main goals were to make it
available as a framework for extensive experimentation of dynamic
EAs and the analysis of new dynamic components and to facilitate
the design of ones as well as a tool to simplify the manual and
automatic design of algorithms. All the code and experimental
scripts are available online at https://zenodo.com/ZZZ/ZZZ and

the most current version of the framework can be found in GitHub
https://github.com/ZZZ/ZZZ5.

This analysis allowed us to verify that, contrary to our expec-
tations, the dynamic components were less influential in leading
to increments in the performance of the algorithm configurations
studied here. It seems that the effect can only be observed in prob-
lems with low dimensionality. We understand that this suggests
that more work should be done to improve their influence in more
dimensions. We also found that the dimensionality of the problem
seems to have a higher impact on the search ability of the EAs
studied in this work.

We conducted an analysis on the choices of components in the
𝐴𝑏𝐶𝐷𝑚𝑎𝑛 and the 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 , and we observed that there is an
agreement in the choice of the percentage of the number of indi-
viduals that are optimized by ES or PSO and in the choice of the
dynamic components, not selected in both configurations. However,
it seems that there is some interaction among some components
since the choice of Local search and the number of sub-population
is clearly different between these two configurations. More focus
should be directed towards clarifying these interactions.

We studied PSO, ES, mQSO, 𝐴𝑏𝐶𝐷𝑚𝑎𝑛 , and 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 . The first
two algorithms are commonly used metaheuristics, mQSO is a
representative of EAs for dynamic problems, and the Man-AbDC
and 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 are algorithm configurations generated using the
components available in our framework. The results have shown
that their relative efficiency depends on the problem’s difficulty:
mQSO and 𝐴𝑏𝐶𝐷𝑎𝑢𝑡𝑜 are the best in lower dimensional problems
while PSO, ES, and 𝐴𝑏𝐶𝐷𝑚𝑎𝑛 achieve a higher performance as the
number of dimensions increase. These results show the power of
the AbCD framework, since we can develop established and new
EAs and study their performance in dynamic problems.

This study strengthens the view using a component-based per-
spective can lead us to a better understanding of the reasons behind
variations in the performance of different algorithms. One limita-
tion of our work is that the number of components and optimizers

5The source code for the framework, as well as experimental data, is available in the
supplementary materials. It will also be on an online repository by the final submission

AbCD: A Component-wise Adjustable Framework for Dynamic Optimization Problems Lisbon ’23, July 15–19, 2023, Lisbon, PT

in the AbCD framework is limited and future works should focus
on finding good components candidates, mainly from effective dy-
namic algorithms from the literature, as well as introducing new
components with insights from our results.

Lisbon ’23, July 15–19, 2023, Lisbon, PT A.Mascarenhas, C.Aranha, Y.Lavinas

REFERENCES
[1] Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. 2015. To DE

or Not to DE?Multi-objective Differential Evolution Revisited from a Component-
Wise Perspective. In Evolutionary Multi-Criterion Optimization, António Gaspar-
Cunha, Carlos Henggeler Antunes, and Carlos Coello Coello (Eds.). Springer
International Publishing, Cham, 48–63.

[2] Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. 2016. Au-
tomatic Component-Wise Design of Multiobjective Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation 20, 3 (2016), 403–417. https:
//doi.org/10.1109/TEVC.2015.2474158

[3] Tim Blackwell and Jürgen Branke. 2004. Multi-swarm Optimization in Dynamic
Environments. In Applications of Evolutionary Computing, Günther R. Raidl, Ste-
fano Cagnoni, Jürgen Branke, David Wolfe Corne, Rolf Drechsler, Yaochu Jin,
Colin G. Johnson, Penousal Machado, Elena Marchiori, Franz Rothlauf, George D.
Smith, and Giovanni Squillero (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 489–500.

[4] T. Blackwell and J. Branke. 2006. Multiswarms, exclusion, and anti-convergence
in dynamic environments. IEEE Transactions on Evolutionary Computation 10, 4
(2006), 459–472. https://doi.org/10.1109/TEVC.2005.857074

[5] J. Branke. 1999. Memory enhanced evolutionary algorithms for changing
optimization problems. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Vol. 3. 1875–1882 Vol. 3. https:
//doi.org/10.1109/CEC.1999.785502

[6] Juergen Branke. 2000. Evolutionary Optimization in Dynamic Environments. Ph. D.
Dissertation. https://doi.org/10.1007/978-1-4615-0911-0

[7] Jürgen Branke. 2002. Empirical Evaluation. Springer US, Boston, MA, 67–98.
https://doi.org/10.1007/978-1-4615-0911-0_5

[8] Christian L. Camacho-Villalón, Marco Dorigo, and Thomas Stützle. 2022. PSO-X:
A Component-Based Framework for the Automatic Design of Particle Swarm
Optimization Algorithms. IEEE Transactions on Evolutionary Computation 26, 3
(2022), 402–416. https://doi.org/10.1109/TEVC.2021.3102863

[9] Felipe Campelo, Lucas Batista, and Claus Aranha. 2020. The MOEADr Package:
A Component-Based Framework for Multiobjective Evolutionary Algorithms
Based on Decomposition. Journal of Statistical Software (2020). In press. Available
from: https://arxiv.org/abs/1807.06731.

[10] M. Clerc and J. Kennedy. 2002. The particle swarm - explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation 6, 1 (2002), 58–73. https://doi.org/10.1109/4235.985692

[11] Marcelo de Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres.
2021. ACVIZ: A tool for the visual analysis of the configuration of algorithms
with irace. Operations Research Perspectives 8 (2021), 100186. https://doi.org/10.
1016/j.orp.2021.100186

[12] R.C. Eberhart and Y. Shi. 2000. Comparing inertia weights and constriction
factors in particle swarm optimization. In Proceedings of the 2000 Congress on
Evolutionary Computation. CEC00 (Cat. No.00TH8512), Vol. 1. 84–88 vol.1. https:
//doi.org/10.1109/CEC.2000.870279

[13] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (jul 2012), 2171–2175.

[14] Xiaohui Hu and R.C. Eberhart. 2002. Adaptive particle swarm optimization:
detection and response to dynamic systems. In Proceedings of the 2002 Congress
on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), Vol. 2. 1666–1670 vol.2.
https://doi.org/10.1109/CEC.2002.1004492

[15] Xiaohui Hu and R.C. Eberhart. 2002. Adaptive particle swarm optimization:
detection and response to dynamic systems. In Proceedings of the 2002 Congress
on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), Vol. 2. 1666–1670 vol.2.
https://doi.org/10.1109/CEC.2002.1004492

[16] Keisuke KAMEYAMA. 2009. Particle Swarm Optimization–A Survey. (2009).
[17] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proceedings of

ICNN’95 - International Conference on Neural Networks, Vol. 4. 1942–1948 vol.4.
https://doi.org/10.1109/ICNN.1995.488968

[18] Yuri Lavinas, Marcelo Ladeira, Gabriela Ochoa, and Claus Aranha. 2022.
Component-Wise Analysis of Automatically Designed Multiobjective Algorithms
on Constrained Problems. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (Boston, Massachusetts) (GECCO ’22). Association for Comput-
ing Machinery, New York, NY, USA, 538–546. https://doi.org/10.1145/3512290.
3528719

[19] Xiong-Wen Luo, Zi-Jia Wang, Ren-Chu Guan, Zhi-Hui Zhan, and Ying Gao. 2019.
A Distributed Multiple Populations Framework for Evolutionary Algorithm in
Solving Dynamic Optimization Problems. IEEE Access 7 (2019), 44372–44390.
https://doi.org/10.1109/ACCESS.2019.2906121

[20] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Bi-
rattari, and Thomas Stützle. 2016. The irace package: Iterated racing for auto-
matic algorithm configuration. Operations Research Perspectives 3 (2016), 43–58.
https://doi.org/10.1016/j.orp.2016.09.002

[21] Trung Nguyen. 2011. Continuous dynamic optimisation using evolutionary algo-
rithms. Ph. D. Dissertation.

[22] Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke. 2012. Evolutionary
dynamic optimization: A survey of the state of the art. Swarm and Evolutionary
Computation 6 (2012), 1–24. https://doi.org/10.1016/j.swevo.2012.05.001

[23] D. Parrott and Xiaodong Li. 2006. Locating and tracking multiple dynamic optima
by a particle swarm model using speciation. IEEE Transactions on Evolutionary
Computation 10, 4 (2006), 440–458. https://doi.org/10.1109/TEVC.2005.859468

[24] Ingo Rechenberg. 1973. Evolutionsstrategie. Optimierung technischer Systeme
nach Prinzipien derbiologischen Evolution (1973).

[25] Philipp Rohlfshagen and Xin Yao. 2013. Evolutionary Dynamic Optimization:
Challenges and Perspectives. In Evolutionary Computation for Dynamic Optimiza-
tion Problems, Shengxiang Yang and Xin Yao (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 65–84.

[26] Haluk Rahmi Topcuoglu, Abdulvahid Ucar, and Lokman Altin. 2014. A hyper-
heuristic based framework for dynamic optimization problems. Applied Soft
Computing 19 (2014), 236–251. https://doi.org/10.1016/j.asoc.2014.01.037

[27] K. Trojanowski and Z. Michalewicz. 1999. Searching for optima in non-stationary
environments. In Proceedings of the 1999 Congress on Evolutionary Computation-
CEC99 (Cat. No. 99TH8406), Vol. 3. 1843–1850 Vol. 3. https://doi.org/10.1109/CEC.
1999.785498

[28] Yonas G. Woldesenbet and Gary G. Yen. 2009. Dynamic Evolutionary Algorithm
With Variable Relocation. IEEE Transactions on Evolutionary Computation 13, 3
(2009), 500–513. https://doi.org/10.1109/TEVC.2008.2009031

[29] Shengxiang Yang and Changhe Li. 2010. A Clustering Particle Swarm Optimizer
for Locating and Tracking Multiple Optima in Dynamic Environments. IEEE
Transactions on Evolutionary Computation 14, 6 (2010), 959–974. https://doi.org/
10.1109/TEVC.2010.2046667

[30] Danial Yazdani, Ran Cheng, Donya Yazdani, Jürgen Branke, Yaochu Jin, and Xin
Yao. 2021. A Survey of Evolutionary Continuous Dynamic Optimization Over
Two Decades—Part A. IEEE Transactions on Evolutionary Computation 25, 4 (2021),
609–629. https://doi.org/10.1109/TEVC.2021.3060014

[31] Danial Yazdani, Ran Cheng, Donya Yazdani, Jürgen Branke, Yaochu Jin, and Xin
Yao. 2021. A Survey of Evolutionary Continuous Dynamic Optimization Over
Two Decades—Part B. IEEE Transactions on Evolutionary Computation 25, 4 (2021),
630–650. https://doi.org/10.1109/TEVC.2021.3060012

[32] Danial Yazdani, Babak Nasiri, Alireza Sepas-Moghaddam, and Mohammad Reza
Meybodi. 2013. A novel multi-swarm algorithm for optimization in dynamic
environments based on particle swarm optimization. Applied Soft Computing 13,
4 (2013), 2144–2158. https://doi.org/10.1016/j.asoc.2012.12.020

[33] Danial Yazdani, Mohammmad Nabi Omidvar, Jurgen Branke, Trung Nguyen,
and Xin Yao. 2019. Scaling Up Dynamic Optimization Problems: A Divide-and-
Conquer Approach. IEEE Transactions on Evolutionary Computation PP (03 2019),
1–1. https://doi.org/10.1109/TEVC.2019.2902626

[34] Danial Yazdani, Mohammad Nabi Omidvar, Ran Cheng, Jürgen Branke,
Trung Thanh Nguyen, and Xin Yao. 2022. Benchmarking Continuous Dynamic
Optimization: Survey and Generalized Test Suite. IEEE Transactions on Cybernetics
52, 5 (2022), 3380–3393. https://doi.org/10.1109/TCYB.2020.3011828

https://doi.org/10.1109/TEVC.2015.2474158
https://doi.org/10.1109/TEVC.2015.2474158
https://doi.org/10.1109/TEVC.2005.857074
https://doi.org/10.1109/CEC.1999.785502
https://doi.org/10.1109/CEC.1999.785502
https://doi.org/10.1007/978-1-4615-0911-0
https://doi.org/10.1007/978-1-4615-0911-0_5
https://doi.org/10.1109/TEVC.2021.3102863
https://arxiv.org/abs/1807.06731
https://doi.org/10.1109/4235.985692
https://doi.org/10.1016/j.orp.2021.100186
https://doi.org/10.1016/j.orp.2021.100186
https://doi.org/10.1109/CEC.2000.870279
https://doi.org/10.1109/CEC.2000.870279
https://doi.org/10.1109/CEC.2002.1004492
https://doi.org/10.1109/CEC.2002.1004492
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1145/3512290.3528719
https://doi.org/10.1145/3512290.3528719
https://doi.org/10.1109/ACCESS.2019.2906121
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.swevo.2012.05.001
https://doi.org/10.1109/TEVC.2005.859468
https://doi.org/10.1016/j.asoc.2014.01.037
https://doi.org/10.1109/CEC.1999.785498
https://doi.org/10.1109/CEC.1999.785498
https://doi.org/10.1109/TEVC.2008.2009031
https://doi.org/10.1109/TEVC.2010.2046667
https://doi.org/10.1109/TEVC.2010.2046667
https://doi.org/10.1109/TEVC.2021.3060014
https://doi.org/10.1109/TEVC.2021.3060012
https://doi.org/10.1016/j.asoc.2012.12.020
https://doi.org/10.1109/TEVC.2019.2902626
https://doi.org/10.1109/TCYB.2020.3011828

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Dynamic Optimization Terms
	3.2 Performance measures

	4 AbCD: Adjustable Components for Dynamic Problems
	4.1 Components

	5 Design of Dynamic Evolutionary Algorithms
	5.1 Manual Design
	5.2 Automatic Design

	6 Experiments and Results
	6.1 Baseline
	6.2 Manual Design
	6.3 Automatic Design
	6.4 Results

	7 Conclusion
	References

