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ABSTRACT
The automatic construction of an image filter is a difficult task for
which many recent machine-learning methods have been proposed.
Cartesian Genetic Programming (CGP) has been effectively used in
image-processing tasks by evolving programs with a function set
specialized for computer vision. Although standard CGP is able to
construct understandable image filter programs, we hypothesize
that explicitly using a mechanism to control the size of the gener-
ated filter programs would help reduce the size of the final solution
while keeping comparable efficacy on a given task. It is indeed cen-
tral to keep the graph size as contained as possible as it improves
our ability to understand them and explain their inner functioning.
In this work, we use the Lexicase selection as the mechanism to
control the size of the programs during the evolutionary process,
by allowing CGP to evolve solutions based on performance and on
the size of such solutions. We extend Kartezio, a Cartesian Genetic
Programming for computer vision tasks, to generate our programs.
We found in our preliminary experiment that CGP with Lexicase
selection is able to achieve similar performance to the standard
CGP while keeping the size of the solutions smaller.
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1 INTRODUCTION
Genetic Programming (GP) evolves programs based on a set of
mathematical functions that, when executed, process given inputs
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to produce an expected output. Among variants of GP, Cartesian
genetic programming (CGP) uses graph representations to encode
computer programs. One of the main contribution of CGP is the use
of a fixed-length integer-based genome to encode the functional
graphs. Therefore, small programs can be evolved and later read
for understanding [17]. Moreover, mostly because of the use of a
fixed-size genome, it has been shown that bloat is not a problem
for CGP [16]. Bloat is an undesirable effect that occurs in many
Genetic programming variants that causes the size of the programs
to grow larger without a clear impact on the overall performance
of the evolved programs or even destroying the search ability of
the algorithm [14].

However, there isn’t an explicit mechanism to control the size of
the graphs generated during the search process of CGP. This could
make our ability to interpret the programs evolved and our ability
to extrapolate from them harder. In addition to that, bigger pro-
grams are prone to overfit to the training set, causing generalisation
problems [14]. As we understand that generating well-performing
programs that are also easy to interpret and extrapolate from is
imperative, we conduct a preliminary study on the effects of in-
troducing an explicit mechanism to control the size of graphs in
CGP.

The main goal of this article is to verify if CGP with an explicit
size control mechanism is able to keep competitive performance in
comparison with the standard CGP while reducing the size of the
programs generated. The choice of the method we focus on in this
work to reduce the size of the final programs generated is the 𝜖-
Lexicase selection, which has been shown to be able to keep the size
of the programs generated with GP to a smaller size while keeping
their high performance in many scenarios or metrics [6, 10, 14].

We choose to analyse the different CGP variants on a segmen-
tation task. For that, we use a benchmark dataset, that contains
images of coins in a neutral background. We use the IOU as the
performance metric and the number of active nodes, nodes that are
connected with the program output, as our size metric1.

2 RELATEDWORKS
Most of the works on computer vision tasks use black-box ap-
proaches, such as artificial Deep Neural Networks. However, it is
generally considered to be difficult for humans to analyze and inter-
pret their outputs [3, 13]. One way to complement these black-box
methods is to use methods that are inherently explainable, that do
not require additional mechanisms to be explainable.

1For reproducibility purposes, all the code and experimental scripts are available at
https://github.com/yurilavinas/cgp_lex
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Among such methods, we highlight Cartesian Genetic Program-
ming, an evolutionary computation algorithm that evolves easier-
to-interpret programs, However, most of the works related to CGP
evolve programswithout a clear, explicit size control mechanism [1–
3, 5, 15, 17]. This is probably because it is understood that control-
ling the size of the programs evolved with Cartesian Genetic Pro-
gramming (CGP) isn’t necessary, since CGP isn’t affected by bloat.
One work that caught our attention, by Kalkreuth et al. [9], where
NSGA-II is use to evolve small program, following a multi-objective
approach.

In the context of bloat in Genetic Programming, a popular size
and bloat control method is the Lexicase selection. Another argu-
ment in favor of this method is its simplicity implementation [4, 8,
10] and therefore applicability to not yet explored domains. Inter-
estingly, Lexicase selection is able to focus on multiple goals at the
same time [14], since it selects programs according to performance
on different metrics considered [7].

3 PRELIMINARIES
3.1 Cartesian Genetic Programming
Cartesian Genetic Programming is a Genetic Programming vari-
ant [11] specialized in evolving graphs. Such graphs are often direct
and acyclic and are indexed by Cartesian coordinates. The evolu-
tionary process defines how to connect the nodes of the graphs and
the instructions or functions of each node.

CGP has been successfully used in multiple domains [1, 2, 15]. In
especial, CGP has been applied in computer vision tasks as can be
seen for example for controlling agents to play ATARI games [17],
and in computer vision tasks that uses image processing functions
from openCV and which applies for programs directly to images [3,
5]. Only a few nodes, called “active” nodes, are used as they actually
are connected to the output of the program graph. The other nodes
with no connections to the output are called “inactive” nodes. The
outputs of the program are taken from any internal node or input,
also defined during the evolutionary process.

The solutions in CGP are generally optimized by using the 1+_ al-
gorithm, although any other evolutionary algorithm could be used,
in theory. A population of _ individuals are randomly generated
and evaluated on the problem in question. The evaluation process is
conducted by first generating the program from the graphs evolved
and then measuring the performance of such programs on the task
considered. The solution with the highest performance is main-
tained to the next iteration step, influencing the next _ individuals.
This process is repeated until the stop criteria are met. For more
information see [2, 11, 17].

3.2 Lexicase Selection
Lexicase selection is a selection method designed to manage mul-
tiple metrics at the same time originally proposed for program
synthesis tasks. At every step, this method orders the test cases and
gives priority to solutions with high metric values on the randomly
ordered metric. Therefore, the method can search for solutions that
have good metrics values at the same time with the benefit of in-
creasing diversity during the search process [6]. Overall, Lexicase
selection considers multiple metrics during the whole process, but
without which selecting solutions based on aggregations of metrics.

One disadvantage of this selection method is that it can lead to
poor performance on problems with a continuous fitness space, and
to deal with La Clava et al. [10] introduced the 𝜖-Lexicase selection,
that uses an adaptive threshold parameter 𝜎 . In contexts with a
limited number of metrics, this selection method can lead to low
diversity values [6]. In this work, we only consider two evaluation
metrics, one based on the detection performance and one on the
graph size. Therefore, we used a 𝜖-Lexicase selection method as
our base mechanism to reduce the size of the programs during the
evolution process.

3.3 Evaluation metrics
Intersection over Union (IoU). evaluates the performance of an

algorithm in detecting objects within an image by comparing the
ratio among areas occupied by different objects [12] by measuring
the quality of a predicted mask A mask covering exactly the anno-
tation will produce an Intersection equals to Union, higher values
suggest a higher overlap among such objects (the maximum is 1.0).

Number of active nodes. calculates how many nodes are con-
nected to the program output. We use it to indicate the size of the
programs generated.

4 CGP-LEX
𝜖-Lexicase selection based Cartesian Genetic Programming (CGP-
LEX) is a CGP that selects parents according to different metrics
considered at the same time. The main idea behind implementing
such a variant of CGP is to evolve programs that perform well on
all metrics considered at the same time. The CGP implementation
we use is based on Kartezio, a modular-based Cartesian Genetic
Programming to generate our programs for computer vision tasks,
that introduces the notion of non-evolvable nodes which are func-
tions not subjected to optimization of the syntactic graph. The
Image Processing stack through the algorithm optimizes the ar-
rangement of functions and the parameters in order to produce an
image processing algorithm similar to an human-designed one. Our
implementation adapts Kartezio to incorporate Lexicase selection.

5 DESIGN OF EXPERIMENTS

Figure 1: Example of the coins dataset used.

Figure 2: Output of a program generated by CGP-LEX.
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Figure 3: Mean IOU values (shaded areas show the standard deviation) of the elite solution over the iterations.

Figure 4: Mean number of nodes (shaded areas show the standard deviation) of the elite solutions over the iterations.

To evaluate CGP and CGP-LEX, we compare their performance
and the size of the programs generated on a simple image segmen-
tation task. We use a dataset of coin images, where the goal is to
identify these objects in the background. Figures 1 and 2 show an
example of the dataset and one possible output of the segmentation
made by a program generated by one of the CGP variants.

The operators in the nodes, for any of the CGP methods stud-
ied here, are function calls to the OpenCV Python package 2. All
functions are image-size independent, which implies that the input
and output for a given image are equivalent. We use the standard
1+_ EA is used to evolve the programs. We run all CGP variants of
the models with 30 nodes (30 columns and 1 row), _ = 5 offspring
2A complete list of functions can be found at the https://github.com/yurilavinas/cgp_lex

over 20,000 iterations. The mutation probability was 0.15 for the
functional nodes and 0.2 for the outputs, as in [3]. More work in
tuning the parameters for the CGP variants. Finally, 10 independent
runs were made for each experiment for statistical purposes, due
to time constraints.

6 RESULTS
Figure 3 shows the mean IOU performance (shaded areas show the
standard deviation) of elite solutions over the iterations of the 10
runs of CGP and CGP-LEX. We can see that CGP is able to achieve
higher performance at the very beginning of the search, while GCP-
LEX takes longer to get to about the same IOU values. Moreover,
it seems that the performance of CGP-LEX converges to a lower

https://github.com/yurilavinas/cgp_lex


GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Y.Lavinas

Figure 5: Final program (randomly selected) evolved by CGP.

Figure 6: Final program (randomly selected) evolved by CGP-LEX.

value than the traditional method, although they both seem to reach
good IOU metrics. This overall high performance of both methods
suggests that the dataset considered in our experiments might
not challenge the algorithms and might hide potential differences
among the algorithms.

Figure 4 illustrates the mean number of active nodes (shaded
areas show the standard deviation) over the iterations of the 10
runs of CGP and CGP-LEX. We can see that CGP keeps finding
bigger problems during the search progress. These results, together
with the IOU values discussed earlier indicate that even if larger
programs can perform better, in this scenario, there is no big advan-
tage in having them. On the contrary, CGP-LEX keeps exploring
programs with smaller sizes, to about half of the size of the final
programs evolved by CGP.

Finally, we briefly comment on the final programs evolved by
the CGP variants considered in this study, shown in Figures 5 and 6.
Interestingly, the size of the program returned by CGP is not much
different than the program returned by CGP-LEX, which indicates
that there is a high potential on exploring small-size programs
that are present in both variants, although reinforced by CGP-LEX.
Again, we remember the reader that the simplicity of the dataset
could be hiding a more diverse behavior between CGP and CGP-
LEX.

7 CONCLUSION
The aim of this work was to introduce the 𝜖-Lexicase selection in
CGP and to verify if this selection method was able to keep the
performance of CGP competitive in comparison with the standard
CGP while reducing the size of the programs generated. Our results
showed that there exists a clear influence of 𝜖-Lexicase selection in
CGP.

Overall, this study strengthens the idea that controlling the size
of the programs generated with CGP with a control mechanism
might help the generalisation of simpler, easier-to-understand pro-
gramswith no strong drawback. That suggests that using 𝜖-Lexicase

selection in CGP is a promising direction to further be explored,
especially in the context of interpretability, since CGP-LEX can
generate programs that can be understood, evaluated and used as a
base of analysis.

A natural progression of this work is to investigate the introduc-
tion of other explicit size control mechanisms and the evaluation
of the CGP variants in more challenging datasets. Furthermore, we
aim to investigate the real impact of the ability of CGP-LEX to help
us better interpret evolved programs.
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