
Data sampling via Active Learning in Cartesian

Genetic Programming for Biomedical Data

Yuri Lavinas∗, Nathan Haut† and William Punch† and Wolfgang Banzhaf† and Sylvain Cussat-Blanc∗

∗IRIT - CNRS UMR5505, University of Toulouse

Email: lavinas.yuri.xp@alumni.tsukuba.ac.jp;

Email: sylvain.cussat-blanc@irit.fr
†Michigan State University, Department of Computer Science

Email: hautnath@msu.edu

Email: punch@msu.edu

Email: banzhafw@msu.edu

Abstract—In this contribution, we explore Cartesian Genetic
Programming for image analysis of biomedical data. Producing
large quantities of human-labeled biomedical data is an expensive
task. Here, we introduce a way for CGP to use a small amount of
training data, without loss in performance. To define the size of
the training data, we utilize an Active Learning method to direct
the algorithm towards informative samples. We examine how
sampling a small set of data from the CELLPOSE dataset affects
the performance of CGP. We also study the effects of restarting
CGP with Active Learning. We found that using several restarts
can lead to a more diverse set of the highest-performing solutions
with fewer active nodes while maintaining similar performance
to standard CGP.

Index Terms—cartesian genetic programming, image analysis,
image processing, data sampling

I. INTRODUCTION

As with most of the computer vision domain, the field of

biomedical image analysis has recently been revolutionized by

Neural networks and, in particular, Deep Learning approaches.

They have shown to be very efficient in many image classifi-

cation and segmentation applications such as in dermatology,

radiology and pathology [1], [2], and in some cases even

outperforming human experts in these tasks. However, Deep

Learning approaches have two main challenging drawbacks.

First, they are considered black-box approaches: the decisions

taken by Deep Neural Networks are, nowadays, hard or maybe

even impossible to explain to human experts, which is a

requirement in critical applications such as medicine. Second,

they require large amounts of annotated data. This task has to

be done by experts who are often not readily available and is

very time-consuming.

Recent work showed that Cartesian Genetic Programming

(CGP) is an effective approach to address the above-mentioned

limitation of Deep Learning [3], [4]. CGP evolves solutions

based on a set of mathematical functions that, when executed,

process given inputs to produce an expected output. The phe-

notype of these programs can be represented as graphs which

might be evolved using a (1+λ) evolutionary strategy [5].

One of the main benefits of CGP is the use of a fixed-

length integer-based genome to encode the functional graphs,

not having the bloating effect encountered in many tree GP

approaches. Therefore, small programs can be evolved which

facilitates interpretability [6]. In the specific case of image

processing, the function library contains computer vision

functions that are combined and optimized in order to build

an image processing pipeline adequate to the given task.

To evolve such solutions (or models), we require data that

is manually annotated by a human specialist. However, the

task of collecting and labeling data is expensive and requires

significant time and effort. Thus, our goal is to improve the

evolution of well-performing CGP solutions for biomedical

image processing when using only a small amount of labeled

data during evolution. Our reason is that the amount of data

is extremely limited since biological data is composed of

complex images that are costly to collect and annotate. One of

the popular approaches available to reduce the amount of data

used in Machine Learning is called Active Learning (AL) [7],

[8]. The main idea of AL is to identify samples from a larger

dataset to use during training and create models of equivalent

performance with less overhead [9].

Therefore, we argue that AL is a potential methodology to

be applied to CGP in the biomedical domain. The overall idea

is to sample the most informative data points from an initial

dataset, training on a smaller, selected dataset while achieving

similar performance with faster convergence and to avoid

overfitting by improving generality [7] with less overhead [9].

When using AL, we assume that the most expensive step in

the application is the labeling process [10].

In this contribution, we study how extracting a small set

of data samples from the CELLPOSE dataset affects the

performance of CGP in comparison with the results from CGP

using the whole dataset. Our contributions can be summarized

as follows:

(1) We introduce AL to CGP for biological image segmen-

tation to reduce the number of image points needed to

evolve efficient programs.

(2) We show that AL boosts the convergence speed of CGP.

(3) We present arguments that AL encourages CGP to reduce

the number of active nodes throughout evolution.

The paper is organized as follows: Section II introduces the

necessary background. Section III explains relevant concepts.



(a) Image to segment. (b) Segmentation mask.

(c) The 2 outputs are provided to the Watershed Transform to generate the mask in (b).

Fig. 1: One image from the CELLPOSE dataset, the final segmentation mask generated to this image from CGP with Active

Learning, and the graph used to segment this image.

Section IV gives the experimental setup. Section V presents

the experimental results of our analysis. Finally, Section VI

concludes the paper and discusses further research.

II. PRELIMINARIES

Most work in the area of Computer Vision tasks uses black-

box approaches, such as artificial Deep Neural Networks.

However, these models have proven to be difficult for humans

to analyze and interpret their outputs and they require a high

amount of training data [3], [11]. One way to complement

these black-box methods is to use inherently explainable

methods. Genetic Programming is of this class and among

such methods, we highlight Cartesian Genetic Programming,

an evolutionary computation algorithm that evolves easy-to-

interpret programs1 [3], [4], [6], [12]–[15]. Additionally, GP

approaches require less training data because, while Deep

Neural Networks need to optimize image filters from scratch

at the pixel level, GP uses high-level mathematical functions

already designed and optimized by human engineers to per-

form specific tasks.

A. Cartesian Genetic Programming

Cartesian Genetic Programming is a Genetic Programming

variant [5] specialized in evolving graph phenotype. Such

graphs are often direct and acyclic and are indexed by Carte-

sian coordinates. Evolution defines how to connect the nodes

of the graphs and the instructions or functions of each node.

CGP has been successfully applied in multiple do-

mains [12]–[14]. Specifically, CGP has been applied in Com-

puter Vision tasks such as for controlling agents to play

ATARI games [6], and in image processing tasks, such

as biomedical image segmentation and object detection in

robotics [3], [4], [15]. The solutions in CGP are gener-

ally optimized by using the (1+λ) Evolutionary Algorithm,

1in comparison to Deep Learning models, as most of GP variants.

although any other evolutionary algorithm could be used.

Initially, a population of λ individuals is randomly generated

and evaluated on the problem in question. Then, evaluation is

conducted by first generating the programs from the graphs

and then measuring the performance of such programs on the

task considered. The solution with the highest performance is

maintained to the next generation step, influencing the next

λ individuals created via mutation. This process is repeated

until a stop criterion is reached. For more information, refer

to [5], [6], [14].

B. Active Learning in CGP

Generally, Active Learning (AL) is used with Deep Learn-

ing, one of the most frequently used methods for processing

biomedical data [7], [16] with most of the work on AL found

in the literature focuses on finding the metric that leads the

model to the highest performance [7]. Interestingly, some

papers suggest random sampling as a strong baseline [17],

[18].

In the domain of GP, the efficacy of Active Learning

for symbolic regression tasks has been widely demonstrated

in a diverse group of research, from works that focus on

reducing the number of such evaluations [19] and on creating

smaller, balanced datasets by recursively keeping the most

‘meaningful’ exemplars [20] to studies on improving the rate

and consistency at which well-performing solutions are found

while reducing the required number of training samples [8],

[21]. For classification problems, Hamida et al. [22], [23]

showed how different sampling methods studied across the

years affect the performance of GP. Yet, we did not find works

that combine AL and GP in the biomedical domain.

C. CGP implementation

The CGP implementation we use is based on [3], [4], a

modular Cartesian Genetic Programming system to generate



Algorithm 1 Data sampling via Active learning in CGP

1: Initialize (1 + λ) CGP.

2: while Stopping criterion is not met do

3: Get new dataset S via a selection method.

4: Control size of S.

5: Evolve CGP with the dataset.

6: Update elite solution.

7: Update the fitness values associated with selected

images given the new elite.

8: If restart is true, save elite in external archive, restart

CGP and dataset S.

9: end while

our programs for Computer Vision tasks. This system intro-

duces the notion of non-evolvable nodes which are functions

not subjected to optimization of the syntactic graph. Through

this algorithm, the image processing stack optimizes the

order of functions and their parameters resulting in an image

processing algorithm similar to a human-designed one, since

they are based on established functions for image processing.

Here, we use image processing functions mostly from

OpenCV and scikit-image, which apply programs directly to

images. “Active” nodes are the subset of nodes present in the

final program, since they are connected to the output of the

program graph. Other nodes without connections to the output

are called “inactive” nodes. The outputs of the program can

be taken from any node, which is defined during evolution.

Moreover, in this implementation, the end nodes of CGP are

connected to a fixed endpoint. This endpoint is useful since

it allows CGP to have insight given by a Computer Vision

expert. We use Watershed Transform [24] as the endpoint.

Thus, our CGP has 2 outputs, corresponding to the mask and

markers necessary for the Watershed Transform endpoint.

III. DATA SAMPLING

The CGP with AL (AL-CGP) template we propose for

instantiating and designing sampling method variants is shown

in Algorithm 1. The main difference to standard CGP is that

instead of using a fixed training dataset during evolution,

our template uses a smaller dataset that is selected during

evolution, given the fitness values of the highest performing

solution on the images.

A. Sampling method

We sample the subset of images to be part of the dataset

used in evolution via a sampling method. At each step, two

images are selected: one image with low fitness, and another

with high fitness. The idea is to include (a) an image that

challenges the current elite solution and (b) another image

on which the elite solution performed well, ensuring valuable

information is preserved. By addressing both challenges and

successes, we ensure that the elite solution is exposed to

diverse images, preventing the loss of valuable information

and promoting generalizability.

Algorithm 2 Roulette selection

1: Inputs: fitness values associated with each image.

2: Sample one image given a probability based on the fitness

values.

3: Sample another image given a probability based on the

opposite fitness values (1− fitness).

4: Return Two images

a) Roulette sampling: Sampling is done based on

weighted probabilities given by the fitness values associated

with each image. These values change every time that an

image is evaluated, when this image is introduced to the

dataset, or if it is on the training set S. Algorithm 2 shows

the pseudocode. As said above, two images are selected each

time. Either via direct fitness values for the group (1) or the

inverse fitness values for group (2).

b) Random sampling: We use random sampling as a

baseline. Sampling is done using uniformly distributed values

to select one image at a time.

To decide when to add new images to the dataset, we

follow the work of Hamida et al. [22] and use a deterministic

sampling frequency, f . This method follows this equation

f = int((C ∗ generation)α). Thus, AL-CGP adds images

at the generation gen, when gen mod f = 0.

B. Controlling the size of the dataset

Adding images with Active Learning might increase the

size of the dataset unreasonably. Here, we choose to control

the size of the dataset by simply removing two images from

the dataset randomly. This happens every time that the size of

the dataset is above the maximum limit size.

C. Evaluation metric - Average Precision (AP)

We follow the work in [25] that defines AP = TP/(TP +
FP + FN), where TP mean true positives, FP mean false

positives and FN mean false negatives. We use AP as our

fitness function with a threshold of 0.5 to determine the true

positives of the predicted mask.

D. Stopping criterion - Images processed

Our goal is to study the effects of sampling images from

the dataset during the evolution of CGP. Thus, we have

a different number of images processed by AL-CGP and

standard CGP, at each generation. Given the different sizes

of datasets used during evolution, we cannot use directly the

number of evaluations or generations as our stop criterion.

Thus, we use the number of images processed during evolution

as the stopping criterion. This criterion does not discriminate

if there is repetition of data points.

E. CGP function library

Table I describes the basic function library used in this work

and their related arity2. These operators are functions from the

OpenCV Python package and are fixed to all CGP variants.

2The number of parameters needed by a given function.



TABLE I: Description of the function library used in CGP.

Function Arity Function Arity

Max 2 Min 2
Mean 2 Add 2

Subract 2 Bitwise_not 1
Bitwise_or 2 Bitwise_and 2

Bitwise_and_mask 2 Bitwise_xor 2
sqrt 1 pow2 1
exp 1 log 1

median_blur 1 gaussian_blur 1
laplacian 1 sobel 1

robert_cross 1 canny 1
sharpen 1 gabor 1
abs_diff 1 abs_diff2 2

fluo_tophat 1 ref_diff 1
erode 1 dilate 1
open 1 close 1

morph_gradient 1 morph_tophat 1
morph_blackhat 1 fill_holes 1

remove_small_objects 1 remove_small_holes 1
threshold 1 threshold_at_1 1

distance_transform 1 distance_transform_and_thresh 1
inrange_bin 1 inrange 1

TABLE II: Parameters used.

Parameter Value

Number of nodes 30 nodes
Offspring size λ 5

Inputs 2, α-tubulin and DAPI channels
Outputs 2, mask and markers

Mutation of function nodes 0.15
Mutation of outputs nodes 0.20

Images processed 60,000
Generations - CGP 1,000

Generations - AL-CGP > 1,000
Size dataset used in CGP 10 unique images, sampled before the run

Size dataset used in AL-CGP from 2 to 10, sampled during the run

When to add data
gen mod int((C ∗ gen)α) == 0

C = 2
(AL-CGP only) α = 0.5

IV. EXPERIMENTAL SETUP

To verify if AL can be used to identify samples from dataset

to use during training and create efficient programs, we study

how to use AL to sample a small, yet informative set of images

samples to improve the performance of CGP. For that, we

compare variations of AL-CGP with standard CGP.

A. Parameter setting

AL-CGP builds the dataset to be used during evolution

using Active Learning and standard CGP uses a sample of 10

images randomly, the minimal amount of data found for CGP

to achieve high-performance values, see [3], while AL-CGP

builds the training dataset using the methods in Section III.

Since we want to use only a small amount of labeled data

during evolution, we limit the maximum training dataset size

to 10 images, as chosen in [3]. We run all CGP variants

with the parameters shown in Table II. For the standard

CGP parameters, we use the same values as in [3]. AL-CGP

builds the dataset for training using the deterministic sampling

frequency sampling (Section III-A) and we used the same

parameters as used by [22]. More work is needed in tuning

the parameters for the CGP variants. We run 30 independent

runs of each variant for statistical purposes.

Fig. 2: Median AP values (shaded areas show the standard

deviation) of elite solutions of AL-CGP with 2 sampling

methods. Since the datasets vary in size, we show the number

of images processed. The roulette sampling leads to higher

performance at the end.

We test if using restarts to explore different areas of the

search space leads to more efficient programs, complementing

the faster convergence enhanced by AL [7]. Here, restarts are

done at different steps of evolution by clearing the training

dataset and randomly initializing solutions. Thus, we verify

impacts in the performance of multiples starts of AL-CGP: 2,

5, 10, and 20 times.

B. Performance comparison

We compare the results of the different CGP variants based

on convergence behavior and statistical analysis (Student t-

test). The convergence behavior is used to analyze the AP

performance at multiple points of the evolution to investigate

the performance of different CGP variants. For the statistical

analysis, the student t-test was used with a significance level

of α = 0.05. For fair comparison and facilitating rapid

prototyping, we use the CELLPOSE dataset [25] consisting

of 100 fluorescently labeled protein images of cultured neu-

roblastoma cells with phalloidn FITC and DAPI nuclear stain.

For fair comparisons, we follow the work in [25], where the

data is split into 89 images for training and 11 for testing.

C. Reproducibility

Relevant data and code are available at:

https://zenodo.org/records/10869851. We run the experiments

on HPC resources on the OLYMPE supercomputer, a

SEQUANA (ATOS-BULL) computing cluster with a power

of 1.365 Pflop/s Peak, equipped with Intel Skylake 6140

processors.

V. EXPERIMENTAL RESULTS

First, we validate the sampling mechanism for AL-CGP

described in Section III. Figure 2 shows the median AP

convergence results. Using our sampling mechanism has a

marginal advantage over randomly choosing images, however



(a) Median convergence performance. AL-CGP is faster at the begin-
ning and better performing at the end.

(b) Mean number of active nodes. AL-CGP finds smaller programs
at the beginning of evolution.

Fig. 3: Metric values (shaded areas show the standard deviation) of the elite solutions of AL-CGP versus CGP. AL-CGP uses

a dataset that changes in size, hence, we show the number of images processed to provide a fair comparison.

(a) 2 starts. (b) 5 starts. (c) 10 starts. (d) 20 starts.

Fig. 4: Median AP performance convergence (shaded areas show the standard deviation) of AL-CGP with different restart

periods versus CGP. The size of the datasets used by the different AL-CGP restarting strategies varies, thus we show the

number of images processed instead of generations. Most of the increments in performance are at the beginning of the search.

Fig. 5: Boxplots of AP values of the elite solutions found by

different CGPs. AL-CGP performs better than CGP. Using 2

starts leads to higher median values than CGP.

this superiority does not reach statistical significance. This

small improvement with our method suggests a subtle impact

on dynamically modifying the training data based on informa-

tion from the elite (best performing) solution, as opposed to

random sampling. Given the higher performance of AL-CGP

with roulette, we move on to comment on the differences

in performance exclusively between AL-CGP with roulette

sampling versus standard CGP.

A. Convergence

Figure 3a shows the median convergence behavior AL-

CGP versus standard CGP (shaded areas show the standard

deviation). Using our sampling method, AL-CGP converges

faster than CGP to high values, but eventually, CGP achieves

a performance slightly below that of AL-CGP. We see that

using AL leads to faster convergence, but there is still a gap

to be filled at the end of the execution when compared with

the state-of-the-art Deep Learning performance with DL or

CGP [3]. That said, the efficacy of AL-CGP lies in its ability to

diminish the amount of required training data while delivering

comparable results, as shown here.

B. Number of active nodes

Figure 3b illustrates the mean number of active nodes

(shaded areas show the standard deviation) over the iterations



(a) 2 starts. (b) 5 starts. (c) 10 starts. (d) 20 starts.

Fig. 6: Mean number of nodes of AL-CGP with different restart periods versus standard CGP over the images processed, since

the size of the datasets used in training is different. AL-CGP progresses the search with smaller programs.

(a) Phase 1 (b) Phase 2

Fig. 7: Number of functions used in AL-CGP with 2 start phases. The functions “mean”, “add” and “subtract” are frequently

present. The distribution of functions is different depending on the phase, which suggests diverse elite solutions.

(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4

(e) Phase 5

Fig. 8: Functions used in AL-CGP with 5 start phases. The functions “mean”, “add” and “subtract” are present are used in

many stages of the search process. The distribution of functions varies depending on the phase.



TABLE III: Statistical analysis between AL-CGP and CGP.

We see statistically significant differences at the begining and

the end of evolution.

Images Used p-value
2,500 0.018
5,000 0.049
7,500 0.221

10,000 0.281
45,000 0.389
47,500 0.074
50,000 0.028
52,500 0.024
55,000 0.034
57,500 0.04
60,000 0.137

of the runs of CGP in comparison to AL-CGP. CGP con-

sistently finds larger programs during the search progress, but

around the first third of the process, the number of active nodes

starts to decrease, aligning with the elite solution’s perfor-

mance convergence. On the other hand, AL-CGP, continually

evolves smaller programs, suggesting that the inclusion of AL

aids CGP to generate simpler and more general programs.

Towards the end of the search, both methods converge to

programs of similar and reduced sizes. Therefore, we argue

that AL-CGP increases program interpretability, as evidenced

by the discovery of more concise programs. Overall, our

findings suggest that the AL-CGP contributes to performance

convergence, in accord with the literature, and enhances one

of the main features of genetic programming: the ability to

generate interpretable programs.

C. Statistical Analysis

The student t-test is conducted across various numbers

of processed images, and the outcomes are illustrated in

Table III. AL-CGP demonstrates statistically significant dif-

ferences compared to CG during the initial one-third of the

search progression until fewer than 7,500 images are pro-

cessed. Subsequently, there are not any statistically significant

differences among the results obtained by the CGP variants.

This pattern changes again after processing more than 47,500

images, where a statistically significant difference appears.

However, towards the conclusion of the search process, the

performance is not statistically significant. This variability

could be associated with a potential shift in how CGP pro-

cesses images during evolution.

D. Restart

Given the fast convergence of the solutions shown by AL-

CGP, we conjecture that restarting the training data and ran-

domly initializing the solutions could benefit the performance

of AL-CGP even further. We argue that restarting the search

before the end of the search progress could lead to a higher

exploration of the search space to regions that might help the

algorithm find high-performing solutions.

Figure 4 shows the convergence plots of AL-CGP when

using restart variants and Figure 5 displays the performancee

of elite solutions found by AL-CGP with restart. We select

this elite from the start phase with the highest median value

for each restarting frequency. We can see that using restarts

reduces the overall performance as the frequency increases.

That said, we can also see that the best-performing solution

is found at different phases, which suggests that the initial

solution from which evolution starts the search process im-

pacts the final solution generated. In addition, the difference

in performance between restarting halfway through the search

progress or not restarting is small, indicating that most of the

increments in performance happen during the first half of the

search and that more sophisticated restart methods might be

an interesting path to explore for enhancing the performance

of AL-CGP.

Moving to Figure 6, we can confirm that using AL results

in a CGP model with a lower number of active nodes. The

number of nodes is only similar between the restart strategies

and standard CGP at the beginning of each start phase.

Of course, the impact of this effect varies given the restart

frequency and is clearer in the early stages of the evolution.

We think that the reason for such an effect is that frequent

changes in the dataset force CGP to find more generalizing

solutions, instead of finding solutions overfitted to the images

processed.

Finally, we comment on the distribution of functions used

by the elite solutions of the different runs, just before restart-

ing. This is shown in Figures 7 and 8. We focus our analysis

on AL-CGP with 2 and 5 starting phases to reduce the amount

of information analyzed. We can see that the distribution

varies according to the phase in consideration for both restart

strategies. Some functions, especially aggregation functions,

such as “mean”, “add” and “subtract” are frequently present,

independently of the phase in consideration. We understand

that doing several restarts during the search can lead to a

more diverse set of elite solutions, given the distribution of

used functions.

VI. CONCLUSIONS

We studied using ideas from Active Learning in GP and we

focused on how sampling biomedical images from the avail-

able dataset affects the performance of CGP in comparison to

using the whole dataset. We found that the convergence speed,

measured by the average precision metric, considerably im-

proves until it converges at around the first third of the search

process, to similar values as standard CGP. Furthermore, we

observed that using AL reduces the number of active nodes

throughout evolution, but the effects and possible implications

of such reduction are yet to be studied. We also saw that

using restarts led to more diverse individuals, as shown by

the distribution of functions used.

Future work could utilize diverse individuals from multiple

starting points to generate an ensemble and then use disagree-

ment or uncertainty of the ensemble as a metric for selecting

new data to see if these ideas from Active Learning via such

metrics sampling could boost performance. One limitation of

our method is that it assumes that a ground truth is known for

all the images. In scenarios with a collection of unlabeled



images, our method can only be applied to ask an expert

to label these unlabeled data. Thus, we think that including

unsupervised learning techniques, is a possible direction to

increase the versatility and efficacy of our work in real-case

scenarios.

This work represents a new stride towards achieving a

broader objective in the construction of an interactive learning

system within the domain of biomedical image analysis. We

anticipate that the combination of CGP, along with efficient

active learning, has the potential to catalyze the development

of applications where a human expert annotates specific

images or areas of large images upon request. The images

or areas for annotation would be suggested by the learning

algorithm based on its current requirement for annotated data,

such as specific cell types, color diversity, shapes, or others.

Our goal is to foster a collaborative effort between our CGP

learner and a human expert, guiding the learning procedure

through the complexities of the images to be analyzed.

ACKNOWLEDGMENT

This work is funded by the Laboratoire d’Excellence

Toulouse Cancer TOUCAN, contract ANR11-LABX. This

work is supported by the AI Interdisciplinary Institute ANITI,

funded by the French program “Investing for the Future –

PIA3” under Grant agreement no. ANR-19-PI3A-0004.

REFERENCES

[1] A. Esteva, K. Chou, S. Yeung, N. Naik, A. Madani, A. Mottaghi, Y. Liu,
E. Topol, J. Dean, and R. Socher, “Deep learning-enabled medical
computer vision,” NPJ digital medicine, vol. 4, no. 1, p. 5, 2021.

[2] S. Deng, X. Zhang, W. Yan, E. I.-C. Chang, Y. Fan, M. Lai, and Y. Xu,
“Deep learning in digital pathology image analysis: a survey,” Frontiers

of medicine, vol. 14, pp. 470–487, 2020.
[3] K. Cortacero, B. McKenzie, S. Müller, R. Khazen, F. Lafouresse,

G. Corsaut, N. Van Acker, F.-X. Frenois, L. Lamant, N. Meyer et al.,
“Evolutionary design of explainable algorithms for biomedical image
segmentation,” p. 7112, 2023.

[4] Y. Lavinas, K. Cortacero, and S. Cussat-Blanc, “Evolving graphs
with cartesian genetic programming with lexicase selection,” in
Proceedings of the Companion Conference on Genetic and Evolutionary

Computation, ser. GECCO ’23 Companion. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1920–1924. [Online].
Available: https://doi.org/10.1145/3583133.3596402

[5] J. F. Miller, “An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach,” in Pro-

ceedings of the 1st Annual Conference on Genetic and Evolutionary

Computation - Volume 2, ser. GECCO’99. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999, p. 1135–1142.

[6] D. G. Wilson, S. Cussat-Blanc, H. Luga, and J. F. Miller, “Evolving
simple programs for playing atari games,” in Proceedings of the

Genetic and Evolutionary Computation Conference, ser. GECCO ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
229–236. [Online]. Available: https://doi.org/10.1145/3205455.3205578

[7] M. Gaillochet, C. Desrosiers, and H. Lombaert, “Active learning
for medical image segmentation with stochastic batches,” Medical

Image Analysis, vol. 90, p. 102958, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1361841523002189

[8] N. Haut, W. Banzhaf, and B. Punch, “Active learning improves
performance on symbolic regression tasks in stackgp,” in Proceedings

of the Genetic and Evolutionary Computation Conference Companion,
ser. GECCO ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 550–553. [Online]. Available: https://doi.org/10.
1145/3520304.3528941

[9] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of artificial intelligence research, vol. 4, pp.
129–145, 1996.

[10] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2009.

[11] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature machine

intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[12] A. M. Ahmad, G. M. Khan, S. A. Mahmud, and J. F. Miller, “Breast
cancer detection using cartesian genetic programming evolved artificial
neural networks,” in Proceedings of the 14th Annual Conference on

Genetic and Evolutionary Computation, ser. GECCO ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 1031–1038.
[Online]. Available: https://doi.org/10.1145/2330163.2330307

[13] M. Suganuma, S. Shirakawa, and T. Nagao, Designing Convolutional

Neural Network Architectures Using Cartesian Genetic Programming.
Singapore: Springer Singapore, 2020, pp. 185–208. [Online]. Available:
https://doi.org/10.1007/978-981-15-3685-4_7

[14] J. Biau, D. Wilson, S. Cussat-Blanc, and H. Luga, “Improving image
filters with cartesian genetic programming.” in IJCCI, 2021, pp. 17–27.

[15] S. Harding, J. Leitner, and J. Schmidhuber, Cartesian Genetic

Programming for Image Processing. New York, NY: Springer New
York, 2013, pp. 31–44. [Online]. Available: https://doi.org/10.1007/
978-1-4614-6846-2_3

[16] V. Nath, D. Yang, B. A. Landman, D. Xu, and H. R. Roth, “Diminishing
uncertainty within the training pool: Active learning for medical image
segmentation,” IEEE Transactions on Medical Imaging, vol. 40, no. 10,
pp. 2534–2547, 2021.

[17] A. Kirsch, J. van Amersfoort, and Y. Gal, “Batchbald: Efficient
and diverse batch acquisition for deep bayesian active learning,” in
Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf

[18] A. Casanova, P. O. Pinheiro, N. Rostamzadeh, and C. J. Pal,
“Reinforced active learning for image segmentation,” in International

Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=SkgC6TNFvr

[19] C. Gathercole and P. Ross, “Dynamic training subset selection for
supervised learning in genetic programming,” in Parallel Problem

Solving from Nature — PPSN III, Y. Davidor, H.-P. Schwefel, and
R. Männer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994,
pp. 312–321.

[20] E. Vladislavleva, G. Smits, and D. den Hertog, “On the importance
of data balancing for symbolic regression,” IEEE Transactions on

Evolutionary Computation, vol. 14, no. 2, pp. 252–277, 2010.

[21] N. Haut, B. Punch, and W. Banzhaf, “Active learning informs
symbolic regression model development in genetic programming,”
in Proceedings of the Companion Conference on Genetic and

Evolutionary Computation, ser. GECCO ’23 Companion. New York,
NY, USA: Association for Computing Machinery, 2023, p. 587–590.
[Online]. Available: https://doi.org/10.1145/3583133.3590577

[22] S. Ben Hamida, H. Hmida, A. Borgi, and M. Rukoz, “Adaptive
sampling for active learning with genetic programming,” Cognitive

Systems Research, vol. 65, pp. 23–39, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389041720300541

[23] H. Hmida, S. B. Hamida, A. Borgi, and M. Rukoz, “Sampling methods
in genetic programming learners from large datasets: A comparative
study,” in Advances in Big Data, P. Angelov, Y. Manolopoulos, L. Il-
iadis, A. Roy, and M. Vellasco, Eds. Cham: Springer International
Publishing, 2017, pp. 50–60.

[24] S. Beucher and F. Meyer, “The morphological approach to segmentation:
the watershed transformation,” in Mathematical morphology in image

processing. CRC Press, 2018, pp. 433–481.

[25] C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu, “Cellpose: a
generalist algorithm for cellular segmentation,” Nature methods, vol. 18,
no. 1, pp. 100–106, 2021.


