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ABSTRACT
In this contribution we study how to effectively evolve programs
tailored for biomedical image segmentation by using an Active
Learning approach in Cartesian Genetic Programming (CGP). Ac-
tive Learning allows to dynamically select training data by identi-
fying the most informative next image to add to the training set.
We study how different metrics for selecting images under active
learning impact the searchability of CGP. Our results show that
datasets built during evolution with active learning improve the per-
formance of Cartesian GP substantially. In addition, we found that
the choice of the particular metric used for selecting which images
to add heavily impacts convergence speed. Our work shows that
the right choice of the image selection metric positively impacts
the effectiveness of the evolutionary algorithm.
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1 INTRODUCTION
The field of biomedical image analysis has recently been revolu-
tionized by Neural Networks and in particular Deep Learning (DL)
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approaches, as has happened in most of the Computer Vision do-
main. Deep Neural Networks perform very well in many image
classification and/or segmentation tasks within the medical domain
such as in dermatology, radiology and pathology [11, 12], and in
some cases even beat human experts. However, DL approaches
have two main drawbacks. First, they are considered “blackbox”
approaches: the decisions taken by deep Neural Networks are often
hard to explain and it might be close to impossible to describe to
a human expert, an important obstacle in critical human-life ap-
plications such as medicine. Second, DL approaches require large
amounts of annotated data, a time-consuming and expensive task
that must be performed by experts who are often very busy, making
it hard to obtain sufficient amounts of data available for use.

Recent work showed that Cartesian Genetic Programming (CGP)
is an effective approach to address the above-mentioned limita-
tions of DL [10, 21], with results competitive to DL. CGP evolves
solutions based on a set of mathematical functions that process
given inputs to produce an expected output. The phenotype of a
CGP program can be represented as a graph which often is evolved
using a (1+𝜆) evolutionary strategy [23]. One of the main benefits
of CGP is the use of a fixed-length integer-based genome to en-
code the functional graphs, reducing the bloat effect encountered
in many tree GP approaches. Therefore, small programs can be
evolved which facilitates interpretability [28]. In the specific case
of image processing, the function library contains Computer Vision
functions that are combined and optimized in order to build an
image processing pipeline adequate to the given task.

Minimizing the amount of necessary data for evolving effective
programs in such a task poses an important challenge. In this con-
text, our goal in this work is to improve the evolution of CGP when
processing biomedical images. In our recent work [22], we have
shown that AL can help CGP to use a small amount of training
data, without loss in performance. Here, we investigate whether the
effects of AL are amplified in the absence of limitations on training
data size, thereby potentially enhancing its impact on CGP.

It is now well established from a variety of studies that Active
Learning (AL) [15] methods can provide performance improve-
ments in image processing by using information from evolution to
iteratively build a training dataset.
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We here argue that we can incorporate ideas from AL method-
ologies and apply them to CGP to generate more data-efficient
programs for biomedical image segmentation. We focus our efforts
on developing a method to sample informative images, selected
during evolution, resulting in a smaller training set than without
these methods. We expect that CGP with AL can achieve higher
performance with faster convergence than traditional CGP.

2 PRELIMINARIES
CGP is a Genetic Programming variant [23] specialized in evolving
graph phenotypes. Such graphs are often direct and acyclic and
are indexed by Cartesian coordinates. Evolution defines how to
connect the nodes of the graphs and the function of each node.

CGP has been successfully applied in multiple domains [1, 8,
26]. Specifically, CGP has been applied in Computer Vision tasks
such as for controlling agents to play ATARI games [28], and in
image processing tasks, such as biomedical image segmentation and
object detection in robotics [10, 14]. Solutions in CGP are generally
optimized by using the (1+𝜆) Evolutionary Strategy, although any
other evolutionary algorithm could be used. Initially, a population of
𝜆 individuals is randomly generated and evaluated on the problem
in question. Then, evaluation is conducted by first generating the
programs from the graphs and then measuring their performance
on the task considered. The solution with the highest performance
is maintained to the next generation step, influencing the next 𝜆
individuals created via mutation. This process is repeated until a
termination criterion is reached. For more information, the reader
is referred to [8, 23, 28].

GP has been widely used in the biomedical domain, and as Khan
et al. stated, GP is “often applied for classifying cancerous and non-
cancerous cells" [19]. In particular, one can find GP contributions
that involve feature extraction [3, 4, 7, 18, 27] or that involve image
classification [2, 5, 29].

2.1 Dynamic Data Sampling
Generally, dynamic data sampling is one of the most important
components of Active Learning (AL) methods. AL is frequently used
in Deep Learning in the context of processing biomedical data [13,
24] with most of the work on AL in the literature focusing on
finding themetric that leads models to the highest performance [13].
Interestingly, there are papers that suggest random sampling as a
strong baseline [9, 20].

In the domain of GP, the efficacy of AL for symbolic regression
tasks was shown to improve the rate and consistency at which
well-performing solutions are found, while reducing the number
of required training instances [15, 16]. For classification problems,
Hamida et al. [6, 17] has shown how different sampling methods
affect the performance of GP. In our recent work [22], we have
shown that AL can help CGP to use a small amount of training data,
without loss in performance and that CGP with AL benefits from
restarts, that lead to more diverse individuals.

3 DATA SAMPLING IN CARTESIAN GP
The CGP with Dynamic data sampling (dyn-CGP) template we
propose for instantiating and designing sampling method variants
is shown in Algorithm 1. The main difference to standard CGP is

Algorithm 1 Dynamically sampling in CGP (dyn-CGP)
1: Initialize (1 + 𝜆) CGP.
2: while Stopping criterion is not met do
3: Evolve CGP with the training dataset.
4: Update elite solution.
5: Calculate uncertainty𝑚𝑒𝑡𝑟𝑖𝑐 on the images not in use.
6: Add image to the training dataset given𝑚𝑒𝑡𝑟𝑖𝑐 .
7: end while

that instead of using a fixed training dataset during evolution, our
template uses a smaller dataset that is selected during evolution,
given the different metrics (explained below).

We sample the subset of images to be part of the training dataset
used in evolution via a sampling mechanism and compare dif-
ferent methods. Two of these mechanisms sample data based on
uncertainty-related information, while the other mechanism sam-
ples images based on values taken from a uniform distribution.

To calculate uncertainty in CGP, we use a group of parallel CGP
runs, executed in parallel. Uncertainty-based AL utilizes this group
of diverse runs of programs to search different areas of the search
space, the diversity of the models then allows their disagreement
to be used as an uncertainty measure to select new training data
where uncertainty is maximized. The idea is that selecting data
where uncertainty is high will lead to the selection of data that will
be most informative to the current models in training. [16]. In this
study, the parallel runs are only employed to estimate uncertainties,
while for generating segmentation masks and all metrics related to
the performance of dyn-CGP we choose from the parallel runs one
program, one with the highest fitness value on the training data.

Uncertainty. Uncertainty is computed by counting the pairwise
differences between the pixels of the predicted masks for each
program on a given image. If two pixels have a different label
between two masks, an uncertainty of 1 is assigned to that pixel. If
the labels are the same, an uncertainty of 0 is applied. The overall
uncertainty for a given image is the average uncertainty of all the
pairwise uncertainties between each program. The metric ranges
from 0 to 1.

Weighted Uncertainty. The weighted uncertainty works similarly
to the basic uncertainty mentioned above with one key difference.
Here, we double the uncertainty measurement if one pixel is labeled
as 0 and the other pixel is labeled with a non-zero value. This
assumes higher uncertainty should be assigned if models disagree
on whether a pixel is foreground (non-zero) or background (0).
Where models agree on a pixel being foreground but disagree on
which label it should be assigned, an uncertainty of 1 is given. The
weighted metric ranges from 0 to 2 instead of 0 to 1.

Uniform sampling. We use uniform random sampling as a base-
line. Sampling is done using uniformly distributed values to select
one image at each step. There is no information gathered from the
parallel runs of CGP in terms of the images selected.

3.1 Termination Criterion
Images processed. Our goal is to study the effect of sampling of

images from the dataset during evolution. Thus, we have a different
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Figure 1: Dynamically sampling images for training helps CGP to achieve high performance faster.

Table 1: Parameters used.

Parameter Value
Number of nodes 30 nodes
Offspring size, 𝜆 5

Inputs 2, 𝛼-tubulin and DAPI channels
Outputs 2, mask and markers

Mutation of function nodes 0.15
Mutation of outputs nodes 0.20

Images processed 15,000
Training generations 100

independent executions 30

number of images processed by AL-CGP and standard CGP, at each
generation. Given the different sizes of the datasets used during
evolution, we cannot use the number of evaluations or generations
as our termination criterion. Instead, we use the number of images
processed during evolution as the termination criterion.

4 EXPERIMENTAL SETUP
dyn-CGP builds the dataset for training using the dynamic data
sampling methods from Section 3 while standard CGP uses all 89
images available in the training set. We run all CGP variants with
the parameters shown in Table 1. For standard CGP parameters, we
use the same values as in [10]. dyn-CGP adds new data to the dataset
for training every 100 generations, but more work is needed if we
want to tune the parameters for the CGP variants. For statistical
purposes, 30 independent runs were done for each variant.

We analyze the impact of different CGP parallel runs in terms of
exploration of different areas of the search space and their ability
to find different regions of the search space that can lead to more
efficient programs. Here, we consider three different configuration
on the number of parallel runs. For traditional CGP and dyn-CGP
with uniform metric, the number of parallel run tested are: 1, 5, 10
and 15. For the uncertainty-based metrics, parallel runs in dyn-CGP
are: 2, 5, 10 and 15.

For fast prototyping, we use the CELLPOSE dataset [25] which
consists of 100 images of fluorescent-labeled protein of cultured
neuroblastoma cells with phalloidin FITC and DAPI nuclear stain.
For a fair comparison, we follow the work in [25], where the data
is split into 89 images for training and 11 for testing.

Table 2: Mean AP performance of the parallel runs of dyn-
CGP with different sampling mechanisms given 30 indepen-
dent runs for each case. The ∗ shows statistical difference,
p-value < 0.05, in comparison to GCP given the Student t-test.

Sampling mechanism Parallel runs Mean (standard deviation)
Uncertainty 2 0.836 (0.024)
Uncertainty 5 0.843 (0.015)*
Uncertainty 10 0.839 (0.016)
Uncertainty 15 0.833 0.016)
Uniform 1 0.842 (0.021)
Uniform 5 0.845 0.012)
Uniform 10 0.849 (0.017)
Uniform 15 0.852 (0.015)*

Weighted uncertainty 2 0.845 (0.027)
Weighted uncertainty 5 0.840 (0.022)
Weighted uncertainty 10 0.843 (0.016)
Weighted uncertainty 15 0.847 (0.015)*

5 EXPERIMENTAL COMPARISON
First, we look at the impact on Average Precision (AP) performance
of using parallel runs in dyn-CGP on the performance on the test
data. The results are shown in Table 2. The main result here is that
dynamic data sampling positively impacts the performance of CGP,
since all methods found better performance than traditional CGP
that uses all data available for training. That is not a surprise, since
sampling data during evolution allows the programs to explore
more carefully individual features of images, without overfitting.
Moreover, combining dynamic data sampling with parallel dyn-
CGP runs increases the performance of CGP, since the highest
performance of dyn-CGP given the different metrics is with 15
parallel dyn-CGP runs.

5.1 CGP vs dyn-CGP
We now look at the highest-performing CGP variants for CGP and
dyn-CGP, given each sampling method. These highest performing
configurations are highlighted in bold in Table 2. We can verify
the speed of such algorithms in the sequential boxplots shown
in Figure 1 (on the first page). The most striking observation is
that dyn-CGP clearly converges faster than traditional CGP. While
all dyn-CGP showed a relatively high performance from the very
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beginning.

6 CONCLUSION
We have studied how to effectively evolve programs for biomedical
image segmentation using Cartesian GP (CGP). We utilized ideas
from the Active Learning domain to create a training dataset that
grows in size during evolution. We found that there are two main
benefits of using growing training datasets: (i) It improves the
performance of the algorithms in terms of AP, and (ii) it increases
the convergence speed of CGP. That said, there is still a gap to be
filled when compared with the state-of-the-art performance in this
dataset of 0.93 by Deep Learning and 0.89 with CGP [10].
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