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Abstract. In this contribution we study how to effectively evolve pro-
grams tailored for biomedical image segmentation by using an Active
Learning approach in Cartesian Genetic Programming (CGP). Active
Learning allows to dynamically select training data by identifying the
most informative next image to add to the training set. We study how
different metrics for selecting images under active learning impact the
searchability of CGP. Our results show that datasets built during evo-
lution with active learning improve the performance of Cartesian GP
substantially. In addition, we found that the choice of the particular
metric used for selecting which images to add heavily impacts conver-
gence speed. Our work shows that the right choice of the image selection
metric positively impacts the effectiveness of the evolutionary algorithm.

Keywords: cartesian genetic programming · biomedical data · data
sampling · active learning

1 Introduction

The field of biomedical image analysis has experienced a significant revolution
with the usage of Neural Networks, particularly Deep Learning (DL) techniques,
displaying a similar trend that happened in the broader domain of Computer Vi-
sion. Deep Neural Networks exhibit remarkable performance across various image
classification and segmentation tasks within medical disciplines such as derma-
tology, radiology, and pathology [15,14], occasionally surpassing human experts.
Nonetheless, DL methodologies encounter two primary limitations. Firstly, they
are regarded as black-box systems, as the decision-making processes of deep Neu-
ral Networks often lack interpretability, a difficult challenge in critical domains
like medicine. Secondly, DL approaches necessitate substantial amounts of an-
notated data, a resource-intensive and costly task typically carried out by busy
experts, that reduces the acquisition of larger datasets for training purposes.

Recent work has demonstrated that Cartesian Genetic Programming (CGP)
is an effective approach to address the above-mentioned limitations inherent in
DL [12,28], with results competitive to DL. CGP evolves solutions based on a
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set of mathematical functions that process given inputs to produce an expected
output. The phenotype of a CGP program can be represented as a graph which
often is evolved using a (1+λ) evolutionary strategy [31]. One of the main benefits
of CGP is the use of a fixed-length integer-based genome to encode the functional
graphs, mitigating the bloat effect encountered in many tree GP approaches,
allows evolution to design small and interpretable solutions [40]. Particularly
in image processing tasks, the CGP function library contains Computer Vision
(CV) functions that are combined and optimized in order to construct tailored
image processing pipelines suitable for specific objectives.

Minimizing the amount of necessary data for evolving effective programs in
CV tasks poses an important challenge. Our goal in this work is to improve the
evolution of CGP when processing biomedical images. In our previous work [29]
we showed that building a small set of data samples in a dataset increases the
convergence speed of CGP and leads to potentially more diverse solutions.

It is now well established Active Learning (AL) is able to effectively sample
the most informative data points on different domains of knowledge [16,17,20,34].
In specific in Image Processing tasks [29,26,10], AL methods can provide per-
formance improvements by using information from evolution (or training) to
iteratively build a dataset. The main idea is to identify useful sample images
from a larger dataset to apply during training which create programs of equiv-
alent performance, but with less overhead [11]. Also, AL might help evolution
avoid overfitting [6].

We here argue that we can incorporate ideas from AL methodologies and
apply them to CGP to generate more data-efficient programs for biomedical
image segmentation. We focus our efforts on developing a method to sample
informative images, selected during evolution, resulting in a smaller training set
than without these methods. We expect that CGP with AL can achieve higher
performance with faster convergence than traditional CGP. This work extends
our recent works [29,30] by an in-depth discussion of the impacts of Active
Learning in CGP, including a discussion the frequency of images sampled and
the potential impacts of the highly frequent images in the search dynamics of
CGP; investigating the experimental results in terms of performance; conver-
gence speed; program size; and on how to use information about the frequency
of sampled images to improve CGP performance. Therefore, our contributions
can be summarized as follows:

(1) We show that some images lead to more uncertainty in the number parallel
runs of CGP variants and discuss possible reasons why.

(2) We study the sampling frequency of each image available to be used in the
training dataset.

(3) We investigate if using information about the frequency of sampling can
directly affect the performance of CGP.

The paper is organized as follows: Section 2 introduces the necessary background.
Section 3 explains relevant concepts. Section 4 gives the experimental setup.
Section 5 presents the experimental results of our analysis. Finally, Section 6
concludes the paper and discusses further research.
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Fig. 1: The genotype of CGP.

Table 1: Description of the function library used in CGP.
Function Arity Function Arity

Max 2 Min 2
Mean 2 Add 2

Subract 2 Bitwise_not 1
Bitwise_or 2 Bitwise_and 2

Bitwise_and_mask 2 Bitwise_xor 2
sqrt 1 pow2 1
exp 1 log 1

median_blur 1 gaussian_blur 1
laplacian 1 sobel 1

robert_cross 1 canny 1
sharpen 1 gabor 1
abs_diff 1 abs_diff2 2

fluo_tophat 1 ref_diff 1
erode 1 dilate 1
open 1 close 1

morph_gradient 1 morph_tophat 1
morph_blackhat 1 fill_holes 1

remove_small_objects 1 remove_small_holes 1
threshold 1 threshold_at_1 1

distance_transform 1 distance_transform_and_thresh 1
inrange_bin 1 inrange 1

2 Preliminaries

Most work in the area of Computer Vision tasks uses blackbox approaches, such
as artificial Deep Neural Networks. However, these models have proven to be
difficult for humans to analyze and interpret [12,33]. One way to complement
these blackbox methods is to use methods that are inherently explainable. The
class of Genetic Programming (GP) approaches is among such methods. Here we
highlight Cartesian Genetic Programming (CGP), an evolutionary computation
algorithm that evolves easier-to-interpret programs (as with most GP variants),
in comparison to Deep Learning models [1,36,9,40,18,12].

2.1 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a Genetic Programming variant [31]
specialized in evolving graph genotypes. Such graphs are often direct and acyclic
and are indexed by Cartesian coordinates. Evolution defines how to connect the
nodes of the graphs and the function of each node. CGP has been successfully
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applied in multiple domains [1,36,9]. Specifically, CGP has been applied in Com-
puter Vision tasks such as for controlling agents to play ATARI games [40], and
in image processing tasks, such as biomedical image segmentation and object
detection in robotics [18,12].

CGP generally employs the (1+λ) Evolutionary Algorithm (EA), although
any other evolutionary algorithm could be used. Initially, a population of λ
individuals is randomly generated and evaluated on the problem in question.
Then, evaluation is conducted by first generating the programs from the graphs
and then measuring their performance on the task considered. The solution with
the highest performance is maintained to the next generation step, influencing
the next λ individuals created via mutation. This process is repeated until a
termination criterion is reached. For more information, see [31,9,40].

GP has been widely used in the biomedical domain, and as Khan et al.
stated, GP is usually used in classification of cancerous cells [25]. In particular,
one can find GP contributions that involve feature extraction [38,24,3,4,8] or
that involve image classification [2,5,41].

2.2 Dynamic Data Sampling

Dynamic data sampling is one of the most important components of Active
Learning (AL) methods and its effects have been studied on different Machine
Learning algorithms [37,13,20]. AL is frequently used in Deep Learning in the
context of processing biomedical data [16,32] with most of the work on AL fo-
cusing on finding the metric that leads models to the highest performance [16].
Interestingly, there are papers that suggest random sampling as a strong base-
line [26,10].

In the domain of GP, the efficacy of Active Learning for symbolic regres-
sion tasks has been widely demonstrated in a diverse group of research, from
works that focus on reducing the number of such evaluations [17] and on cre-
ating smaller, balanced datasets by recursively keeping the most ‘meaningful’
exemplars [39] to studies on improving the rate and consistency at which well-
performing solutions are found while reducing the required number of training
samples [19,20]. For classification problems, Hamida et al. [6,22] showed how
different sampling methods studied across the years affect the performance of
GP. Yet, we did not find works that combine AL and GP in the biomedical do-
main. Recently, we have shown that AL [29,30] methods can provide performance
improvements in bio-medical image processing.

Here, we use uncertainty as the base for dynamic data sampling, in a similar
manner as discussed by Nguyen et al. [23]. That is, given a model trained in
a dataset D, each image not in the training dataset is assigned an uncertainty
value based on the model’s behavior. The image with highest uncertainty is
labelled (by an oracle or expert) and added to D. Then, D is given to the model
for training.
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Algorithm 1 Adaptive Bio-image Sampling in CGP (ABS-CGP)
1: Initialize (1 + λ) CGP.
2: while Stopping criterion is not met do
3: Evolve CGP with the training dataset.
4: Update elite solution.
5: Calculate uncertainty metric on the images not in the training set.
6: Add one image to the training dataset, the image with the highest uncertainty

metric value.
7: end while

2.3 CGP Implementation

The CGP implementation we use is based on [12], a modular Cartesian Genetic
Programming system to generate programs for computer vision tasks. This sys-
tem introduces the notion of non-evolvable nodes which are functions not sub-
jected to optimization in the syntactic graph. Through this algorithm, the image
processing stack optimizes the order of functions and their parameters resulting
in an image processing algorithm similar to a human-designed one, since they
are based on established functions for image processing.

Figure 1 shows how our CGP implementation works. This genotype is a se-
quence of integers known as genes (each one represented as a box containing a
single integer) that are organized into nodes. A node is composed of a single
function drawn from the function library, at least one connection, and optional
parameters. Moreover, in this implementation, the end nodes of CGP are con-
nected to a fixed endpoint. This endpoint is useful since it allows CGP to obtain
insight given by a Computer Vision expert. We use the Watershed Transform [7]
as the endpoint. Thus, our CGP has 2 outputs, corresponding to the mask and
markers necessary for the Watershed Transform endpoint. Finally, we use image
processing functions mostly from OpenCV and Skimage, which apply programs
directly to images. Only a few nodes, the “active” nodes, are used, as they are
actually connected to the output of the program graph. Other nodes with no
connections to the output are called “inactive” nodes. The outputs of a program
can come from any node and are determined by the evolutionary process.

Table 1 lists the basic functions used in our function library and their related
arities. These operators are functions from the OpenCV Python package and are
fixed for all CGP variants compared3.

3 Adaptive Image Sampling in Cartesian GP

The CGP with Adaptive Biomedical-image Sampling (ABS-CGP) template we
propose for instantiating and designing sampling method variants is shown in
Algorithm 1. The main difference to standard CGP is that instead of using a
fixed training dataset during evolution, our template uses a smaller dataset that
3 The number of parameters needed by a given function.
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is selected during evolution, given the different metrics (explained below). We
sample the subset of images to be part of the training dataset used in evo-
lution via sampling mechanisms. Two of these mechanisms sample data based
on uncertainty-related information, while the other mechanism samples images
based on values taken from a uniform distribution.

To calculate uncertainty in CGP our (1+λ) EA4, we use a group of paral-
lel CGP runs, executed in parallel. Uncertainty-based AL utilizes this group of
diverse runs of programs to search different areas of the search space, the diver-
sity of the models then allows their disagreement to be used as an uncertainty
measure to select new training data where uncertainty is maximized. The idea
is that selecting data where uncertainty is high will lead to the selection of data
that will be most informative to the current models in training. [20].

The idea of maximizing uncertainty relies on our intuition that parallel runs
of CGPs can increase the diversity of the elite programs that can be exploited to
guide the collection of informative data. In addition, by having parallel runs of
CGP we can increase program diversity on the aggregated population level not
present in the (1+λ) EA that is most frequently used in CGP. In this study, the
parallel runs are employed to estimate uncertainties only. Thus, for generating
segmentation masks and all metrics related to the performance of ABS-CGP we
choose from the parallel runs one program, the one with the highest fitness value
on the training data.

3.1 Sampling Mechanisms

Uncertainty counts the pairwise differences between the pixels of the predicted
masks for each program on an image. If two pixels have a different label between
two masks, m1 and m2, a value of 1 is assigned to that pixel; otherwise, a value
of 0 is applied. For an image of pixel dimensionality (i, j),

uncertainty =
Pixels∑
i,j

k =

{
1, if m1(i,j) ̸= m2(i,j)

0, otherwise.
The Weighted Uncertainty doubles the uncertainty measurement if one pixel

is labeled as 0 and the other pixel is labeled with a non-zero value. This assumes
higher uncertainty should be assigned if models disagree on whether a pixel is
foreground (non-zero) or background (0).

Weighted =
Pixels∑
i,j

k =


2, if m1(i,j) ̸= m2(i,j) and m1(i,j) = 0 or m2(i,j) = 0,

1, if m1(i,j) ̸= m2(i,j) and m1(i,j) ̸= 0 and m2(i,j) ̸= 0,

0, otherwise.
Random Uniform sampling serves as a baseline. Sampling is done using uni-

formly distributed values to select one image at each step. There is not any
information gathered from the parallel runs of CGP.

4 (1+λ) These EAs are local search algorithms and do not benefit from large popula-
tions.



Adaptive Sampling on CGP 7

3.2 Evaluation Metric and Termination Criterion

Average Precision (AP) We follow the work in [35] that defines average precision
AP = TP/(TP + FP + FN), where TP means true positives, FP means false
positives and FN means false negatives. We use AP as our fitness function with
a threshold of 0.5 to determine the true positives of the predicted mask.

Our goal is to study the effect of sampling of images from the dataset during
evolution. Thus, we have a different number of images processed by ABS-CGP
and standard CGP, at each generation. Given the different sizes of the datasets
used during evolution, we use the number of images processed during evolution
as the termination criterion. This criterion does not discriminate if there is a
repetition of data points in the training set.

4 Experimental Setup

To verify if dynamically sampling the training dataset is an effective approach
for CGP, we compare standard CGP with a variation of CGP that samples data
during evolution, named ABS-CGP, with different sampling mechanisms. ABS-
CGP builds the dataset for training using the dynamic data sampling methods
(Section 3) and standard CGP uses all 89 images available in the training set. We
run all CGP variants with the parameters shown in Table 2, the same as in [12].
ABS-CGP adds new data to the dataset for training every 100 generations, but
more work is needed if we want to tune the parameters for the CGP variants,
specially on the number of generations. In preliminary experiments, we found
out that using 1,000,000 images processed as the budget for all CGP variants is
enough for them to converge. For statistical purposes, 30 independent runs are
done for each variant. We test three configurations on the number of parallel
runs. For standard CGP and ABS-CGP with uniform metric, the number of
parallel run is: 1, 5, 10 and 15. For the uncertainty-based metrics, the number
of parallel runs is: 2, 5, 10 and 15.

Fig. 2: A target image from
the CELLPOSE dataset.

Parameter Value
Number of nodes 30 nodes
Offspring size, λ 5

Inputs 2, α-tubulin and DAPI channels
Outputs 2, mask and markers

Mutation of function nodes 0.15
Mutation of outputs nodes 0.20

Images processed 1,000,000
Training generations 100

independent executions 30

Table 2: Parameters used.
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Table 3: Mean AP performance of parallel runs of ABS-CGP with different
sampling mechanisms given 30 independent executions for each configuration.

Sampling mechanism Parallel runs Mean (standard deviation)
Uncertainty 2 0.836 (0.018)
Uncertainty 5 0.839 (0.019)

Uncertainty 10 0.840 (0.018)
Uncertainty 15 0.837 (0.016)

Uniform 1 0.839 (0.025)
Uniform 5 0.845 (0.016)
Uniform 10 0.845 (0.017)
Uniform 15 0.848 (0.014)

Weighted uncertainty 2 0.840 (0.028)
Weighted uncertainty 5 0.840 (0.019)
Weighted uncertainty 10 0.839 (0.007)

Weighted uncertainty 15 0.840 (0.015)

4.1 Performance comparison

For prototyping, we use the CELLPOSE dataset [35] which consists of 100 images
of fluorescent-labeled protein of cultured neuroblastoma cells with phalloidin
FITC and DAPI nuclear stain. For a fair comparison, we follow the work in [35],
where the data is split into 89 images for training and 11 for testing. Figure 2
shows a target image from this dataset used for testing. The state-of-the-art
performance in this dataset of 0.93 by DL and 0.89 with CGP [12].

4.2 Reproducibility

For reproducibility purposes, relevant data and code are available at: https://
zenodo.org/records/10992287. We run the experiments on HPC resources on
the OLYMPE supercomputer, a SEQUANA (ATOS-BULL) computing cluster
with a power of 1.365 Pflop/s Peak, equipped with Intel Skylake 6140 processors.

5 Experimental Comparison

We systematically examine and interpret the outcomes of image segmentation
into cells versus background obtained through experimentation based on overall
performance and convergence speed, images sampled and number of nodes used
over evolution. We highlight that all metrics and measures are calculated based
on the highest-performing program of the parallel runs of the CGPs variants.

Table 3 shows the impact on performance on the test data of using parallel
runs in ABS-CGP. The main result from our experiments is that data sampling
positively impacts the performance of CGP, since all methods found better per-
formance than standard CGP that uses all data available for training, under the
current experimental settings and budget. That is not a surprise, since sampling
data during evolution allows the programs to explore more carefully individual
features of images, without overfitting. Also, combining dynamic data sampling
with parallel ABS-CGP runs increases the performance of CGP.

https://zenodo.org/records/10992287
https://zenodo.org/records/10992287
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Fig. 3: Dynamically sampling images for training helps CGP to achieve high
performance faster. We show the best performing configuration of CGP and
ABS-CGP with: uncertainty, uniform and weighted uncertainty.

5.1 CGP vs ABS-CGP

On our previous work [30], we found that using parallel runs of CGP without
AL reduces the performance of CGP under the same budget, thus we compare
the highest-performing ABS-CGP given each metric directly against a simple
run of CGP. The highest performing ABS-CGP configurations are highlighted
in bold in Table 3. We can verify the convergence speed of such algorithms in
the sequential boxplots shown in Figure 3. The most striking observation is that
ABS-CGP clearly converges faster than traditional CGP, while all ABS-CGP
showed a relatively high performance from the very beginning. To verify if there
is statistically significant difference between ABS-CGP and CGP, we conducted
the Mann-Withney-Wilcoxon test 5. We highlight that we are only comparing
the performance of ABS-CGP with a metric at a time against CGP, as we are not
interested in performance differences between ABS-CGP variants. All ABS-CGP
methods show statistical difference to CGP, with p-value < 0.05.

Figure 4 shows the number of nodes of CGP and the highest performing ABS-
CGP for each sampling method. All CGP variants work with small programs
during the whole evolution process. The size of the programs evolved by ABS-
CGP varies given the sampling method, although all are working with programs
slightly bigger than CGP. Figure 5 shows the final models generated by AB-
CGP and the related outcome segmentation obtained using those models. The
segmentation models produced by ABS-CGP show different levels of complexity

5 Shapiro-Wilk’s method showed a p-value < 0.05 implying that the distribution of
the data is significantly different from normal distribution.
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Fig. 4: Size of the programs generated given the number of active nodes.

and interpretability. These Figures give strong support that the models generated
are overall simple and likely very interpretable.

5.2 Frequency of Images Used

The most surprising result found in this study concerns the frequency of images
used. Figure 6 shows the sampling frequency of each image available to be used
in the training dataset. These results are based on the aggregate outputs of ABS-
CGP with uncertainty-based metrics over 60 independent executions (30 runs
for each metric of these metrics, the results of traditional CGP and ABS-CGP
with Uniform sampling are not shown since they do not sample images), since
these metrics are the ones that capture information about images. Clearly, some
images are selected more often than others.

Figure 7 show the most frequently selected images: 0, 20 and 21; and, for
comparison, on and the least frequently selected ones: 78, 45 and 63. The images
on the top of this Figure shows that the size, shape and brightness of the cells
vary considerably, possibly indicating different details of the cells present in these
images. This variation in cells indicates more complex data, which is a reasonable
explanation for why these images were frequently sampled. Our analysis goes
in agreement with observations from the biological field, where images with
more cells are harder to analyze because the density of the cell often leads to
cell membranes getting in contact, and possibly covering between cells (cells on
top of each other). Additionally, images with high cell densities have a higher
likelihood of showing rare events, which can make analysis more difficult. One of
such events are mitosis, where a cell produces two identical nuclei in preparation
for cell division, increasing cell density.

Looking at the bottom images of Figure 7, however, it is possible to come up
with a different scenario. The most clear distinction is that the number of cells is
drastically smaller in this case, which, by itself, leads to a decrease in uncertainty
values of the programs within the parallel ABS-CGP runs. This is because our
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(a) Final graph of CGP. Related mask.

(b) Final graph of ABS-CGP with the uncertainty metric. Related mask.

(c) Final graph of ABS-CGP with the uniform sampling. Related mask.

(d) Final graph of ABS-CGP with the weighted uncertainty
metric. Related mask.

Fig. 5: Example of interpretable graphs by ABS-CGP used to create the segmen-
tation mask for the image in Fig. 2.
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Fig. 6: Images sampled by all ABS-CGP parallel runs with both uncertainties
sampling. Some images are more sampled. This suggests that there are features
present in such images that lead to more uncertainty among the programs.
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(a) Image of index 0. (b) Image of index 20. (c) Image of index 21.

(d) Image of index 78. (e) Image of index 45. (f) Image of index 63.

Fig. 7: Frequently sampled images (top) and least frequently sampled images
(bottom). The top images lead to more uncertainty for ABS-CGP.

metrics indirectly take into consideration the number of cells present in an image
thus limiting the total uncertainty estimation of the program of the parallel ABS-
CGP runs. Overall, we see several differences between the two groups of images,
revealing possible insights into the characteristics of this dataset.

When we look at the scatter-plot on the image sampled frequency versus
number of cells in images, Figure 8, we see that more images are selected as the
number of cells increase. Some of the most frequently selected images 0, 20 and
21 have 175, 175 and 174 cells, respectively. On the other hand, some of the least
frequently selected images 78, 45 and 63 have 20, 52 and 21, respectively, a much
lower number of cells. That supports our argument that the number of cells in
an image leads to more uncertainty in the programs in the parallel ABS-CGP
runs, however, it is clear that this alone is not the only cause of uncertainty.

5.3 CGP and Frequently Sampled Images

Given the fast convergence of the solutions shown by ABS-CGP and the prefer-
ence for sampling some specific images, we test if using information about the
frequency of sampled images could benefit the performance of CGP. We com-
pare: (1) ABS-CGP with the uniform metric and 15 models, (2) the 10 most
frequently sampled images ABS-CGP selected before training based on the re-
sults of the previous Section 5.2, (3) the 10 least frequently sampled images and
(4) CGP that uses 10 images randomly selected before training.

Figure 9 shows the median AP convergence results. The performance of ABS-
CGP (mean: 0.85 and standard deviation: 0.01) shows that using dynamic sam-
pling leads to high-performing models that can generalize well to the test data
(as shown by the low standard deviation), suggesting we need to find a fine bal-
ance in the choice of representative images to be used in training. Interestingly,
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having a dataset composed of 10 images randomly selected can achieve high final
results (mean: 0.83 and standard deviation: 0.03), however, with a higher stan-
dard deviation, meaning randomly selecting images before the search progress
starts is sensitive to the data sampling. The CGP variants that use the most
and least frequently sampled images are the worse-performing algorithms that
converge early during the search process, before half of the search, showing that
they are not able to generalize well to the test data. These findings exhibit the
significance of dynamic sampling and Active Learning concepts in optimizing
performance for this particular problem domain.
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6 Discussion

We have studied how to effectively evolve programs for biomedical image segmen-
tation using Cartesian GP (CGP). We utilized ideas from the Active Learning
domain to create a training dataset that grows in size during evolution, since in
we aim to sample the most informative biomedical images for model training. We
found that there are two main benefits of using growing training datasets: (i) It
improves the performance of the algorithms in terms of AP, and (ii) it increases
the convergence speed of CGP. Additionally, we showed that having CGP trained
with the 10 most frequently sampled images accelerated the convergence speed,
but training CGP with a dataset composed of 10 images randomly selected also
increases the convergence speed and leads better end results, indicating a subtle
balance in the choice of images for training. Later, to provide a more compre-
hensive analysis of ABS-CGP we will apply this method to different datasets
and we compare it against Lexicase selection [27,21].

Our results also show that the data sampling in CGP provides valuable in-
sights into the features that induce uncertainty in the programs. For example,
we found a group of images that are frequently sampled, and that these images
contain many cells that vary in size, shape and color. Through systematic ob-
servation and further analysis of the specific features of these images, we might
be able to reduce undesired variability in program output. This analysis might
help increase the interpretability of programs and also lead to additional im-
provements in performance. The ideas explored in this contribution can serve as
a basis for future research on the co-evolution of datasets. By exploring the evo-
lution of datasets in connection with the programs generated from them, CGP
might find more general programs that can deal efficiently with more diverse
data sets that better capture the complexities of real-world scenarios.

Finally, this work represents a new stride towards achieving a broader objec-
tive in the construction of an interactive learning system within the domain of
biomedical image analysis. We expect that the combination of CGP with Active
Learning has the potential to reinforce the development of applications where a
human expert annotates specific images or areas of large images upon request.
The images or areas for annotation would be suggested by the learning algo-
rithm based on its current requirement for annotated data, such as specific cell
types, color diversity, shapes, or others. The ultimate aim is to foster a collabo-
rative effort between our CGP learner and a human expert, guiding the learning
procedure through the complexities of the images to be analyzed.
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