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Abstract. Despite over twenty years of research and application, as-
sisted seismic history matching (ASHM) remains a challenging prob-
lem for the energy industry. ASHM attempts to optimise the subsurface
reservoir model parameters by matching simulated data to the observed
production and time-lapse (4D) seismic data, leading to greater confi-
dence in the assimilated models and their predictions. However, ASHM
is a difficult and expensive task that has had mixed results in industry,
and a new approach to the problem is required. In this work, we exam-
ine ASHM from a different perspective by exploring the topology of the
optimisation fitness landscape. Many methods for fitness landscape anal-
ysis (FLA) have been developed over the past thirty years, but in this
work, we extend the use of local optima networks (LONs) to the real-
world and computationally expensive ASHM problem. We found that
the LONs were different for objective functions based on both produc-
tion data and time-lapse reservoir maps, and for each dimensionality.
Objective functions based on well pressures and oil saturation maps had
the highest success rate in finding the global optimum, but the num-
ber of suboptimal funnels increased with dimensionality for all objective
functions. In contrast, the success rate and strength of the global op-
tima decreased significantly with increasing dimensionality. Our work
goes some way to explaining the mixed results of real ASHM problems
in industry, and demonstrates the value of fitness landscape analysis for
real-world, computationally expensive problems such as ASHM.

Keywords: Assisted seismic history matching · Local optima networks · Fitness
landscape analysis
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1 Introduction

In the energy industry, oil and gas production [25], CO2 storage [11], geother-
mal energy [8], and more recently Hydrogen storage [26] have been exploited
over many decades for numerous purposes. However, to simulate and optimise
the production and injection of fluids from the reservoirs, detailed computer
models of the subsurface geology, or reservoir models, are required [19]. These
can be challenging to construct and often contain many errors and uncertain-
ties. The main sources of data that are used to define the models are three-
dimensional seismic images of the subsurface geology and the in-situ properties
of the rocks measured in well bores. However, well-bore data is only measured at
sparse locations in the reservoir and contains measurement errors, and seismic
data, despite being recorded over the whole field, has weak signals, is noisy, and
contains artefacts. The interpretation and integration of the data to construct
reservoir models is a highly skilled task, but the resultant models are typically a
simplified representation of the real subsurface geology, and have many possible
alternatives [2]. Consequently, their predictions and forecasts often have a wide
range of uncertainty.

During production, the reservoir model can be calibrated and constrained
using reservoir history matching [16]. The model parameters are adjusted to
achieve a good match between the predicted production data from the model
and the measured, or observed, production data from the wells. In addition, time-
lapse, or 4D, seismic data are sometimes recorded over the field, which provide
three-dimensional images, or snapshots, of fluid movement and pressure changes
within the reservoir over time [20]. This can be used in assisted seismic history
matching (ASHM) [12], where the model parameters are automatically adjusted
so that the model accurately predicts both the historical production data from
the wells and the time-lapse seismic data [17]. The quality of the history-matched
models is usually quantitatively assessed by measuring the misfit, or fitness,
between the modelled and observed data using a predefined objective function
[6] and metric [5]. However, since the data are sparse and contain errors [21], and
since the initial reservoir models are so uncertain, there is often low confidence in
the resulting assimilated models [17]. After more than twenty years of research
and application, ASHM remains a challenging and expensive task with mixed
success in industry, and a new approach to the problem is required.

In this work, we take a fresh look at ASHM and examine it from the perspec-
tive of the fitness landscape. This is the multidimensional surface that defines the
misfit between the model and observed data over the entire parameter search-
space [22]. We propose that characterising the topology of the fitness landscape
before optimisation will inform the problem setup, guide the choice of optimisa-
tion strategy, and lead to better assimilated models. We believe that this new
approach will result in a deeper understanding of the ASHM problem and will
advance the technology in industry.

However, characterising the topology of fitness landscapes is an extremely
challenging task. Fitness landscapes are complex, multidimensional surfaces that
are difficult to compute and visualise. Many methods for fitness landscape analy-
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sis (FLA) have been developed during the past thirty years or more [9], but they
have typically been applied to combinatorial problems or continuous problems
with analytical solutions. Exploratory landscape analysis (ELA) is a popular ap-
proach to FLA [10], but recently, local optima networks (LONs) [13,14], which
depict the global structure of fitness landscapes as graphs, has been extended to
continuous optimisation problems [1]. LONs use a basin-hopping approach fol-
lowed by local minimisation to identify funnels and local or global minima within
the fitness landscape structure. They have been applied to benchmark problems
and, more recently, to real-world problems with analytical functions [3], but they
have not been applied to complex real-world problems such as ASHM.

This paper aims to extend the use of LONs to the computationally expensive
real-world problem of ASHM, and to explore the structure of ASHM fitness
landscapes for the first time. We have implemented the algorithm to run in
parallel on a cluster computer, and calculated the LONs for several objective
functions using a realistic reservoir model. These are based on both production
data from wells and time-lapse reservoir maps extracted from the simulation
model, which represent ideal 4D seismic data. Furthermore, we have explored
the impact of the number of parameters by computing LONs in four, seven, and
ten dimensions.

The paper is structured as follows. In Section 2.1, we define the local optima
network model. Then, in section 2.2, we describe the reservoir model used for the
experiments and the method used to sample the fitness landscapes. In section
3, we present the ASHM local optima networks for the reservoir model based
on four objective functions and in three different dimensions, as well as their
network and performance metrics. We discuss the results and their implications
for ASHM in Section 4. Finally, we summarise our observations and conclusions
in Section 5, as well as our thoughts on future work.

2 Method

2.1 Local Optima Networks

To analyse and visualise the structure of the studied landscapes, we consider
the compressed monotonic local optima network (CMLON) model [15,3]. We
formalise the notions of fitness landscapes and local optimum in continuous
optimisation before defining the CMLON model. We also define the notions of
monotonic sequence and funnel, which are relevant to our analysis. Thereafter,
we describe the process of sampling and constructing the network models.

Definitions.

Fitness landscape. Is a triplet (X, N, f) where X ∈ Rn is the set of all real-
valued solutions of n dimensions, i.e., the search space; N is a function that
assigns to every solution x ∈ X a set of neighbours N(x); and f : Rn → R is the
fitness function. A potential solution x is denoted as vector x = (x1., x2, . . . , xn),
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and the neighbourhood is based on hypercubes. Formally, the neighbourhood of
a candidate solution xk is defined as, xj ∈ N(xk) ↔ |xki − xji| < si, i =
{1, . . . , n} where s = (s1, s2, . . . , sn) is a vector that represents the size of the
neighbourhood in all dimensions.

Local optimum. Is a solution x∗ ∈ X such that ∀x ∈ N(x∗), f(x∗) ≤ f(x).

Compressed monotonic LON model. In the standard LON model [13], nodes
are local optima and edges represent any possible transition among optima with
a given perturbation operator. The CMLON model [15,3] is a coarser model
that compresses connected local optima at the same (or very similar) fitness
values into single nodes, and has edges representing improving transitions only.
The purpose of the CMLON model is to study landscapes with neutrality, that
measures the complement of the proportion of compressed nodes to the total
number of local optima, providing an indication of plateaus within the landscape,
as well as to explore the landscape’s funnel structure. To define the graph model,
we first define the nodes and edges.

Compressed local optimum. A compressed local optimum is a single node that
represents a set of connected nodes in the LON model with the same (or very
similar) fitness value.

Monotonic perturbation edges. There is a monotonic perturbation edge from
a local optimum l1 to a local optimum l2, if l2 can be obtained from a random
perturbation of l1 followed by a local minimisation process, and f(l2) ≤ f(l1).
The edge is called monotonic because the transition between two local optima
is non-deteriorating. Edges are weighted with the number of times a transition
between two local optima occurred.

Compressed monotonic LON. It is the directed graph CMLON = (CL,CE )
where nodes are compressed local optima CL, and edges CE ⊂ ME are aggre-
gated from the monotonic edge set ME by summing up the edge weights.

Monotonic sequence. A monotonic sequence is a path of connected local op-
tima where their fitness values are always decreasing. Every monotonic sequence
has a natural end, which represent a funnel bottom, also called sink in graph
theory.

Funnel. We can characterise funnels in the CMLON as all the monotonic
sequences ending at the same compressed local optimum (funnel bottom or sink).

Sampling and Constructing the Network Models. Our methodology for
sampling and constructing the networks is based on the basin-hopping algorithm
[23]. Basin-hopping is an iterative algorithm, where each iteration is composed of
a random perturbation of a candidate solution, followed by a local minimisation
process and an acceptance test. Specifically, the CMLON model construction
uses a variant called monotonic basin-hopping (MBH) [7] where the acceptance
criterion considers only improving solutions.

This is the first attempt to apply local optima networks to a computationally
expensive real-world problem, such as ASHM. In order to construct the models,
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several basin-hopping runs are conducted. Each run produces a search trajec-
tory, which is recorded and stored as a set of nodes (local minima) and edges
(consecutive transitions). Note that different runs can in principle traverse the
same nodes and edges, even if they start from different initialisation points. The
models are constructed in a post-processing stage, where the trajectories gener-
ated by a fixed number of runs (100 in our implementation) are aggregated to
contain only unique nodes and edges.

ASHM problems require simulation and evaluation of the objective function
to compute each fitness sample. This is computationally expensive and may
take several minutes or even hours to run. To ease this, the original LONs algo-
rithm (https://github.com/gabro8a/LONs-Numerical.git) was re-implemented
on a multi-node high-performance cluster computer. Each LON takes approxi-
mately four days to compute using fifty CPUs (AMD ™Opteron 6348 processors
operating at, 1400MHz) for each objective model. Consequently, some parame-
ters have been estimated, and further evaluation is required. For example, the
perturbation strength, which is an important parameter [1], was fixed at 2.5% of
the normalised search space distance for each parameter, but this should be de-
termined more rigorously in future work. The computational time also increases
with dimensionality. Reservoir simulations were performed using the ™Eclipse
100, version 2018.2, black-oil reservoir simulator.

The CMLON network visualisations were generated using the original LONs
post-processing software, which is based on the R implementation of the igraph
package (https://igraph.org/r/). The parameters for the CMLON visualisations
are listed in Table 1. The Best value is the minimum fitness of the objective func-
tion for each CMLON. The number of iterations was determined by examining
the convergence of each run, and was chosen to be one hundred and fifty for all
experiments. However, the increase in value of the best fitness with dimensional-
ity suggests that more iterations may be needed to improve convergence in higher
dimensions. The position threshold, ϵ, defines where two solutions represent the
same local optimum, i.e., the difference between each of their components is less
than the threshold value, ϵ.

2.2 Reservoir Model and Fitness Computation

The Brugge model, shown in Figure 1, is a full-field synthetic reservoir model
created for the Society of Petroleum Engineers (SPE) Applied Technology Work-
shop (ATW) on production optimisation in 2008 [18]. Twenty oil production
wells and ten water injection wells are used to develop the field; the oil producers
are placed near the crest of the structure in the oil zone, and the water injectors
are sited down-flank in the water zone. Four geological formations were defined
within the reservoir (Schelde, Mass, Waal, and Schie), which are populated with
realistic petrophysical values for porosity, net-to-gross, and permeability. The
model also contains a geological fault near the crest of the structure.

One of the supplied model realisations (FY-SF-KM-1-1) was selected to repre-
sent the true reservoir model, which was then simulated to generate the observed
dataset used for the experiments. This included oil production rates (WOPR)

https://github.com/gabro8a/LONs-Numerical.git
https://igraph.org/r/
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Table 1: CMLON parameters for the Brugge model SHM fitness landscapes.

Objective Dimensions Best Step size Iterations Runs ϵ

WOPR
4 1.032 2.5% 150 100 0.1
7 2.277 2.5% 150 100 0.1
10 20.325 2.5% 150 100 0.1

WBHP
4 1.597 2.5% 150 100 0.1
7 1.616 2.5% 150 100 0.1
10 1.678 2.5% 150 100 0.1

SOIL
4 7.410× 10−10 2.5% 150 100 1× 10−6

7 9.030× 10−7 2.5% 150 100 1× 10−6

10 8.000× 10−6 2.5% 150 100 1× 10−6

PRESSURE
4 2.390× 10−3 2.5% 150 100 0.1
7 3.550× 10−2 2.5% 150 100 0.1
10 2.490× 10−1 2.5% 150 100 0.1

Fig. 1: Three-dimensional view of the Brugge reservoir model. The green zone is the
oil bearing reservoir and the blue zone is the water bearing reservoir. The wells are
shown by the black lines that penetrate the reservoir from above.
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and bottom-hole pressure (WBHP) measurements for each well, and time-lapse
reservoir maps (between zero and ten years of production) of reservoir pressure
(PRESSURE) and oil saturation (SOIL) extracted from the simulation model.
The observed production data were used to control subsequent reservoir simu-
lations by total liquid rate, but the proportions of produced oil and water, as
well as bottom-hole pressure, were not constrained. These were dependent on
the reservoir model and fluid properties.

The reservoir model properties were perturbed to create different realisations
of the initial model, and their simulated data were compared with the observed
data to calculate the model’s fitness. Scalars were applied to the petrophysical
property grid values of net-to-gross ratio (NTG) and permeabilities (PERMX
and PERMY), measured in millidarcies (mD), within each formation. The pa-
rameters and their ranges are listed in Table 2. In the four-dimensional problems,
the net-to-gross and permeability values were varied for the Waal formation, as
well as the transmissibility of the fault. The same properties were also varied
for the Maas formation in the seven-dimensional problems, and, in addition,
the same properties were varied for the Schie formation in the ten-dimensional
problems.

Table 2: Reservoir model parameters and their geological property ranges. The table
shows the mean of the property values for each formation, as well as the minimum and
maximum scalar values in parentheses.

Formation Property Mean Minimum Maximum

Maas
NTG MAAS 0.88 0.62 (0.7) 0.97 (1.1)
PERMX MAAS (mD) 90 45 (0.5) 900 (10.0)
PERMY MAAS (mD) 90 45 (0.5) 900 (10.0)

Waal
NTG WAAL 0.97 0.68 (0.7) 1.0 (1.1)
PERMX WAAL (mD) 814 407 (0.5) 1628 (2.0)
PERMY WAAL (mD) 814 407 (0.5) 1628 (2.0)

Schie
NTG SCHIE 0.77 0.39 (0.7) 1.0 (1.3)
PERMX SCHIE (mD) 36 18 (0.5) 360 (10.0)
PERMY SCHIE (mD) 36 18 (0.5) 360 (10.0)

Fault FLT TRANS 1 0.1 (0.1) 2.0 (2.0)

Four objective functions were defined for the experiments, two based on the
well production data, and two based on time-lapse reservoir maps extracted
from the simulation models. The oil production rates of the wells (WOPR) and
bottom-hole pressure measurements (WBHP) were used for the production based
objectives, and oil saturation maps (SOIL) and reservoir pressure maps (PRES-
SURE) were used for the time-lapse reservoir map based objectives. For the well
based objectives, fitness values were calculated as the mean square error (MSE)
of the model and observed production data for each well and averaged for an
overall model fitness. For the map based objectives, the MSE of the modelled and
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observed reservoir maps was calculated for each formation, and also averaged for
an overall model fitness.

3 Results

The Brugge model CMLONs are shown as two-dimensional networks in Figure
2 and as three-dimensional representations in Figure 3. In the three-dimensional
visualisations, fitness is shown on the vertical axis, where lower values are bet-
ter. In all networks, the pink nodes are global funnels and the blue nodes are
suboptimal funnels. The global optima are highlighted by bright red circles, and
the suboptimal funnel bottoms are dark blue circles. The size of the nodes is
related to the strength of the incoming connections, and the weight of the edges
is related to the number of times a transition occurs between two nodes in the
sampling process. The CMLONs are shown for four different objective functions;
two are based on well production data (WOPR, WBHP), and two are based on
time-lapse reservoir maps (SOIL, PRESSURE). The CMLONs dimensionality,
n, increases from left to right for each objective function. The network and per-
formance metrics, which are described in Table 3, are shown in Figure 4 and
their values are listed in Table 4.

Table 3: Network and performance metric descriptions.

Metric Description

Success rate Proportion of basin-hopping runs that reach the global minimum.

Deviation Mean deviation from the global minimum (unnormalised)

Nodes Number of nodes in the CMLON (compressed local optima).

Funnels Number of sinks (CMLON nodes without outgoing edges).

Neutral Proportion of CMLON nodes to the number of local optima.

Strength Normalised incoming strength of the globally optimal funnels.

The CMLONs in Figure 2 and their three-dimensional representations in
Figure 3 show that the networks have different characteristics for each objec-
tive function and for each dimensionality. The four-dimensional CMLON for
the WOPR objective has many suboptimal nodes that are clustered toward the
centre of the network, and most search trajectories follow a path toward them.
In higher dimensions, the funnels are more dispersed and some optimal nodes
appear. It has a moderate success rate in four dimensions, which diminishes in
higher dimensions. The CMLON for WBHP has high-strength optimal nodes in
four-dimensions, which are also clustered toward the centre of the network. The
global optimum is reached by many of the search trajectories. It has the highest
success rate of all the experiments. In higher dimensions, the search trajectories
disperse to form many suboptimal funnels, and the success rate decreases. The
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CMLONs for the SOIL objective are denser than the other objectives and have
one hundred funnels in all dimensions. In four dimensions, there are many opti-
mal and suboptimal funnels, and the success rate is high; however, the optima
are dispersed. In higher dimensions, the trajectories spiral downwards toward
suboptimal funnel bottoms, and the success rate diminishes markedly. The four-
dimensional CMLON for the PRESSURE objective has a broad distribution of
suboptimal nodes and a few global optima. The majority of the search trajecto-
ries descend rapidly towards low fitness values and then move towards the centre
of the network. In higher dimensions, the suboptimal optimal funnels disperse,
and there are only a few global funnels. The success rate is moderate in four
dimensions, but also diminishes in higher dimensions.

In four dimensions, there is a distinct difference in character between the
well production objectives (WOPR and WBHP) and the time-lapse reservoir
map objectives (SOIL and PRESSURE). The optima of the production-based
objectives are clustered toward the centre of the CMLON, whereas the optima
of the time-lapse reservoir map based objectives are more dispersed. However,
the differences are less apparent in higher dimensions. The SOIL objective is
distinctive by its high density of funnels in all dimensions, which are dispersed
across the network. They also have more evenly distributed fitness, as indicated
by Figures 3g to 3i. The WBHP and SOIL objectives have the highest success
rates, which suggests they may be preferable for optimisation.

The network and performance metrics are shown as graphs in Figure 4, and
are tabulated in Table 4. They show that the total number of optima (optimal
and suboptimal) is large for all objective functions, and that they increase with
dimensionality for all objectives. There are noticeably more optima for the SOIL
objective than the other objectives. The WOPR, SOIL, and PRESSURE objec-
tives have only a few funnels in four dimensions, but increase markedly in higher
dimensions. The SOIL objective is the exception and has one hundred funnels
for all dimensions. Overall, the success rate is high for the objectives in four di-
mensions, but decreases considerably in seven and ten dimensions. The WBHP
and SOIL objectives have the highest success rate and the highest strength in
four dimensions, which is related to their larger proportion of global optima.
The strength of the global optima nodes follows a similar trend to the success
rate; where the objectives have high strength nodes in four dimensions, but it
decreases in higher dimensions. The WOPR objective is an exception because
despite its moderately high success rate, it has low strength. This may be ex-
plained by its high deviation, indicating the optima are dispersed. The neutral
values are quite different for each objective function. WBHP and SOIL have
high neutrality in four dimensions, which decreases in higher dimensions for
SOIL, but increases slightly for WBHP in seven dimensions before decreasing in
ten dimensions. PRESSURE has lower neutrality for all dimensions, which in-
creases slightly in higher dimensions, and WOPR has negligible neutrality for all
dimensions. Deviation depends on the measurement unit of the objective func-
tion, which varies widely in these experiments. It is lowest in four dimensions
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(a) WOPR, n=4, s=0.42 (b) WOPR, n=7, s=0.01 (c) WOPR, n=10, s=0.01

(d) WBHP, n=4, s=0.79 (e) WBHP, n=7, s=0.05 (f) WBHP, n=10, s=0.02

(g) SOIL, n=4, s=0.68 (h) SOIL, n=7, s=0.03 (i) SOIL, n=10, s=0.01

(j) PRESSURE, n=4, s=0.29 (k) PRESSURE, n=7, s=0.01 (l) PRESSURE, n=10, s=0.01

Fig. 2: CMLONs for the Brugge reservoir ASHM fitness landscapes. The CMLONs are
shown for four objective functions, and in n = {4, 7, 10} dimensions. The success rate,
s, is shown for each CMLON.
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(a) WOPR, n=4, s=0.42 (b) WOPR, n=7, s=0.01 (c) WOPR, n=10, s=0.01

(d) WBHP, n=4, s=0.79 (e) WBHP, n=7, s=0.05 (f) WBHP, n=10, s=0.02

(g) SOIL, n=4, s=0.68 (h) SOIL, n=7, s=0.03 (i) SOIL, n=10, s=0.01

(j) PRESSURE, n=4, s=0.29 (k) PRESSURE, n=7, s=0.01 (l) PRESSURE, n=10, s=0.01

Fig. 3: Three-dimensional CMLONs for the Brugge reservoir ASHM fitness landscapes.
The vertical axis represents fitness. The CMLONs are shown for four objective func-
tions, and in n = {4, 7, 10} dimensions. The success rate, s, is shown for each CMLON.
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for all the objective functions, but increases with dimensionality. This follows
because the funnels become more dispersed in higher dimensions.
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Fig. 4: CMLOM network and performance metrics for the ASHM fitness landscapes.

4 Discussion

The CMLONs presented in Section 3 provide some insight into the structure of
the Brugge model ASHM fitness landscapes. The high proportion of subopti-
mal funnels suggests that the landscapes are complex surfaces with many local
minima, even in low-dimensional spaces. This suggests that there may be many
non-unique solutions, which is consistent with the results seen in industry [17],
and may explain the low-confidence in the models. The number of suboptimal
funnels increases in higher dimensions, and they spread out, indicating that there
is a reduced likelihood of locating the global optimum. We have explored the
problems for four, seven, and ten dimensions; however, ASHM problems for real
reservoir models typically have hundreds or thousands of uncertain parameters,
or dimensions, which makes them more challenging. The network and perfor-
mance metrics show that problem difficulty and non-uniqueness increase with
dimensionality, by increasing suboptimal funnels and decreasing success rates.
It is possible that these trends would extend to higher dimensions, which would
exacerbate the problem difficulty, but that requires further investigation.

Four objective functions have been investigated in this work, but which of
them should be used and how they should be combined is an open question
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Table 4: Network and performance metrics.

Objective Dimension Optima Funnels Neutral Strength Success Deviation
(opt,subopt)

WOPR
4 1153 (0,1) 0.000 0.000 0.420 5.88× 101

7 3063 (1,62) 0.002 0.016 0.010 3.31× 102

10 4016 (0,81) 0.000 0.000 0.010 6.12× 102

WBHP
4 778 (2,3) 0.260 0.500 0.790 3.60× 10−2

7 2086 (2,72) 0.269 0.027 0.050 7.81× 10−1

10 5328 (2,98) 0.066 0.020 0.020 7.07× 10−1

SOIL
4 4141 (68,32) 0.259 0.680 0.680 2.42× 10−6

7 5851 (3,97) 0.133 0.030 0.030 2.92× 10−5

10 6441 (1,99) 0.074 0.010 0.010 9.26× 10−5

PRESSURE
4 947 (1,6) 0.072 0.143 0.292 6.20× 10−1

7 2260 (1,75) 0.080 0.013 0.010 2.28
10 2775 (1,84) 0.092 0.012 0.010 2.82

[5]. The production-based objectives have slightly higher success rates than the
time-lapse reservoir map objectives, although this difference diminishes in higher
dimensions. The WBHP and SOIL objectives have the highest success rates,
which indicates that both production-based objectives and time-lapse reservoir
map objectives are useful in seismic history matching. Combining these may
lead to better objective functions with even higher success rates. CMLONs may
provide a method for this, potentially leading to improved objective functions
with less non-uniqueness and higher success rates.

This work is a first attempt to apply LONs to a computationally expensive
real-world problem such as ASHM, and has some limitations. The perturbation
step-size was chosen, based on previous experience, to be 2.5% of the normalised
([0,1]) parameter space distance, but it is an important parameter which re-
quires further tuning [1]. The number of iterations was selected by examining
the convergence of each run, and balancing it against the computation time. One
hundred and fifty iterations was sufficient for the four dimensional problems, but
more iterations may be required for higher dimensions. The increased value of
the best fitness, the larger proportion of suboptimal funnels, and the reduced
success rates seen in these experiments may be related to poorer convergence
in higher dimensions; however, significantly increasing the number of iterations
could be impractical.

The Brugge model was chosen for these experiments because it is a realistic
full-field reservoir model, and its reservoir simulations are very fast. This makes
it possible to calculate hundreds of thousands of fitness samples for the LONs. In
contrast, reservoir simulations for real producing fields take much longer, and it
will be much more challenging to compute LONs in a reasonable time. New meth-
ods, such as surrogate or proxy models instead of costly numerical simulations,
may be required to significantly speed up simulations and fitness computations
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[24]. Time-lapse reservoir maps extracted from the simulation models were used
to represent ideal time-lapse seismic data in these experiments. However, real
time-lapse seismic data are recorded as acoustic signals, which must be inverted
to pressure and saturation maps to compare with reservoir simulation models
[4]. Since the signals are weak and the processed data contains noise and other
errors, fitness calculations for real data will have some uncertainty. Local optima
networks may provide the means to explore the impact of these issues on the
fitness landscapes, and their implications for the assimilated models.

The results of this work support our initial hypothesis that characterising
the ASHM fitness landscapes will help to understand the problem at a deeper
level and guide its definition to achieve more reliable assimilated models. Our
work demonstrates the value of analysing fitness landscapes for computation-
ally expensive problems. Local optima networks provide a means to extract key
features of the landscape’s structure, and network graphs allow them to be visu-
alised intuitively. The results of this work go some way to explaining the mixed
results of ASHM seen in industry [17], and offer the potential to help design
better objective functions for improved models and more confident predictions.

5 Conclusion

In this work, we have extended the application of local optima networks (LONs)
to the computationally expensive, real-world optimisation problem of assisted
seismic history matching (ASHM). We have compared the compressed mono-
tonic LONs (CMLONs) of four different objective functions based on both well
production data and time-lapse reservoir maps and in three different dimensions.

We found that the CMLONs of the ASHM landscapes have different char-
acteristics for each of the objective functions and dimensionalities. They typ-
ically have a few global funnels in four dimensions, but are dominated by a
larger number of suboptimal funnels in higher dimensions, where there are few
if any global funnels. This implies that there is only a small likelihood of finding
the global optimum in higher dimensional problems, which may help to explain
the uncertainty in the results of real ASHM problems. Furthermore, it demon-
strates the benefit of characterising fitness landscapes before optimisation, even
for computationally expensive problems, and may provide a means to design
more successful objective functions.

This work represents a first attempt to characterise the fitness landscapes of
real-world ASHM problems, but there are many unresolved issues to address. At
this stage of research, our goal is to identify methods that can characterise the
main features of the fitness landscape and provide a more in-depth understanding
of the ASHM optimisation problem. Local optima networks provide a unique
view on the global structure of the landscape, but are computationally expensive.
This work has investigated relatively low-dimensional problems, but real ASHM
problems will have many more parameters.

The Brugge model was selected for these experiments because it is a realistic
reservoir model, with a known solution, and fast reservoir simulations. This
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allowed for sufficiently well sampled LONs to be computed in a reasonable time.
In the future, we intend to further extend the application of LONs to a real
producing reservoir with real time-lapse seismic data However, real reservoir
models have considerably longer simulations, and it may be more challenging
to compute sufficiently sampled LONs. Faster methods for reservoir simulation,
such as proxy models, may be required. Furthermore, real time-lapse seismic
data contain many sources of data errors, and the impact of these on the fitness
landscapes will be considered. Since the true model is unknown for real reservoirs,
we will also investigate the impact of model uncertainty on the fitness landscapes
and its implications for the assimilated models.
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