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1 Introduction

Multi-objective Optimization Problems (MOPs)

appear in problems with two or more conflict-

ing objective functions that need to be simultane-

ously optimized. Finding good sets of solutions for

MOPs is considered a hard issue problem for which

Evolutionary Algorithms have been proposed as

potential solvers [1–3].

The Multi-Objective Evolutionary Algorithm

Based on Decomposition (MOEA/D) [4] is a prac-

tical algorithm for solving MOPs. The key idea

of MOEA/D is to decompose the multi-objective

optimization problem into a set of single-objective

subproblems, which are solved simultaneously.

While the original MOEA/D did not discrim-

inate between subproblems, it has since become

clear that focusing computational effort on specific

subsets of these subproblems can substantially im-

prove the performance of the algorithm [5–9].

Several works have proposed to address this is-

sue and to investigate methods to allocate differ-

ent amounts of computational effort to subprob-

lems [5, 6, 8–12]. These approaches, known as

Resource Allocation (RA) techniques, have been

shown to result in consistent performance im-

provements for the MOEA/D. While different RA

techniques have their particular characteristics, all

limit the number of solutions that are updated at

a given iteration.

This raises the question: are the improvements

from RA in practice due to a reduction of the

population size? A recent paper by Pruvost et

al. [9] points that way, where they explore different

population sizes in MOEA/D in discrete problems.
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However, we feel that other factors are also at work

in this question.

With that in mind, in this work we investi-

gate and quantify the effects of RA on MOEA/D

against MOEA/D with different population sizes

on continuous problems. To achieve this, we

study the correspondences of MOEA/D using RA

against: (1) no RA on a small population size and

(2) no RA on a larger population size.

From an algorithm mechanics point of view,

MOEA/D with RA is comparable to MOEA/D

with a small population size, because both select

to update few solutions every iteration. It is also

comparable to MOEA/D with big population size,

as both maintain a large population set. On the

other hand, MOEA/D with RA is different from

MOEA/D with a small or large population size

because it only updates a (different) subset of its

population at every iteration, while the other two

variants update their whole population.

The result of these similarities and differences is

that MOEA/D with RA will show a hybrid behav-

ior on our experiments: in general, it converges

to the Pareto front at about the same speed as

MOEA/D with small population, but it explores

the search space more like an MOEA/D with a

large population. This motivates the use of RA as

an approach to mitigate common problems related

to the choice of population size.

The remainder of this paper is organized as

follows: Section 2 reviews the main concepts

related to resource allocation in the MOEA/D.

Section 3 explains the relationship between the

choice of population size and resource allocation in

MOEA/D. Section 4 describes the MOEA/D with

n-partial update strategy. Section 5 presents ex-

perimental results related to the investigation of

the effect of partial updates on the performance

of the algorithm, as well as comparisons between



MOEA/D-PS against two different configurations

of MOEA/D, one with a small population size and

another with a big population size. Finally, Section

7 presents our concluding remarks.

2 Resource Allocation

The key idea behind MOEA/D is to decompose

a MOP into a set of single-objective subproblems,

which are then solved simultaneously. While these

subproblems are usually considered equivalent, a

growing body of work indicates that prioritizing

some subproblems at specific points of the search

can improve the performance of MOEA/D. This

issue is commonly addressed using resource alloca-

tion (RA) techniques.

Priority functions are used in resource alloca-

tion to determine preferences between subprob-

lems. These functions take information about

the progress of the search and return priority val-

ues that are then used to change the distribution

of computational resources among subproblems at

any given iteration [13]. They also allow the design

of MOEA/D variants that allocate more resources

on any desired solution characteristics [10], such as

diversity or robustness [14].

Priority functions mediate the distribution of

computational resources using a thresholding op-

eration. At any given iteration t, let uti indicate

the priority function value attributed to the i-th

subproblem, and υt be a threshold value. The

subset of solutions selected for a variation on that

iteration is defined as the subproblems for which

uti ≥ υt.

3 The Importance of Population Size

The population size is one of the essential pa-

rameters of Evolutionary Algorithms. It influences

the dynamics of those algorithms during the execu-

tion [15]. While the right choice can lead to con-

siderable improvements in the performance of an

algorithm, a wrong choice of population size might

have the contrary effect [9,15]. For example, choos-

ing a population too small can cause premature

convergence, and one of the reasons is that a small

population size might prevent the localization of

optimal solutions. However, a bigger population

size may cause the algorithm to waste computa-

tional resources, a critical issue in computationally

costly problems [16].

Moreover, the proper choice of population size

depends on the characteristics of different prob-

lems: their difficulty, the presence of many local-

optima and the shape of the Pareto Front [9, 15,

17].

In MOEA/D, the choice of the population size

also defines the number of sub-problems. Further-

more, each one of these sub-problems might have

different characteristics at a given MOP.

We reason that resource allocation can mitigate

the burden of choosing the right population size

in MOEA/D. That is because MOEA/D with re-

source allocation techniques benefits from main-

taining a big population size and updating very

few solutions at each iteration [9, 12]. That is,

MOEA/D can maintain and improve a substan-

tially large population at a minimal cost, the cost

of updating those few selected solutions, because

MOEA/D with RA techniques only updates this

few solutions.

Consequently, in this work, we aim to answer

the question of how much of the performance im-

provements observed in MOEA/D with Resource

Allocation is due to update only a small number

of solutions from a larger population.

4 The n-Partial Update Strategy

To verify whether there is a positive effect in lim-

iting the number of solutions updated at each iter-

ation, and to investigate the extent of this effect,

we use the n-partial update strategy (PS). This

strategy selects n solutions to update at each iter-

ation. Notice that the PS strategy always includes

the solutions of the boundary weight vectors, one

for each objective.

The reason for always selecting the boundaries

is because they have an impact on the coordinates

of the reference point z∗ used by the scalarizing

function [18]. Algorithm 1 details the pseudocode

of the MOEA/D-DE [5], using the n-partial update

strategy (MOEA/D-PS).

Notice that the standard MOEA/D, as well

as variants such as MOEA/D-DE can be in-



Algorithm 1 MOEA/D-PS (MOEA/D-DE with

n Partial Update Strategy)

1: Input: n, Termination criteria, MOEA/D-DE

parameters.

2: InitializeMOEA/D-DE variables (e.g. weight

vectors, set of solutions, etc.)

3: while Termination criteria do

4: ui ← rand() ▷ Vector of random values

5: Sample n subproblems given ui

6: for i = 1 to N do ▷ Number of

subproblems

7: if subproblem i was sampled then

8: Generate new candidate y for sub-

problem i.

9: Evaluate the new candidate solu-

tion.

10: end if

11: end for

12: Update the set of solutions.

13: end while

stantiated from Algorithm 1 by setting n =

total number of subproblems. The only difference

that the n-partial update strategy introduces in

the base algorithm is that only a few subproblems

are updated at any given iteration, regulated by

the value of n.

It is relevant to observe that subproblems that

are not selected by the n-partial update strategy at

a given iteration may still have their incumbent so-

lutions updated. Resource allocation in MOEA/D-

PS, MOEA/D-DE with the n-partial update strat-

egy, affects only the variation step, not the replace-

ment one; thus, subproblems not selected for varia-

tion may receive new candidate solutions, e.g., gen-

erated for a neighbouring subproblem.

5 Comparison Study

To demonstrate the relationship between re-

source allocation strategies and population size,

we perform the following experimental study. We

compare the MOEA/D-PS against two configu-

rations of MOEA/D with no resource allocation:

the first has a big population, the same size as

the population size of MOEA/D-PS, and the sec-

ond has a small population, the same size as

the number of solutions updated by MOEA/D-

PS at each iteration. This experiment will show

that MOEA/D-PS has characteristics of both

MOEA/D configurations.

5.1 Benchmark Problems

We use the inverted scalable DTLZ benchmark

(DTLZ−1) set [19], with 2 objectives and with di-

mension D = 100.

• DTLZ1−1: Linear Pareto Front;
• DTLZ2−1: Convex Pareto Front;
• DTLZ3−1: Convex Pareto Front;
• DTLZ4−1: Convex Pareto Front.

5.2 Experimental Parameters

We used the MOEA/D-DE parameters as they

were introduced in the work of Li and Zhang [2]

in all tests. Table 1 summarizes the experimental

parameters.

Table 1: Experimental parameter settings.

MOEA/D-DE parameters Value
DE mutation parameter F = 0.25

Polynomial mutation parameters
ηm = 20
pm = 0.01

Restricted Update parameter nr = 2
Locality parameter δp = 0.9
Neighborhood size T = 20

SLD decomposition parameter Value
MOEA/D-PS h = 449
MOEA/D with big pop. h = 449
MOEA/D with small pop. h = 49

Population size Value
MOEA/D-PS 500
MOEA/D with big pop. 500
MOEA/D with small pop. 50

Resource allocation parameter Value

ps
50, 10% of the pop. size
with the boundary weight
vectors

Experiment Parameters Value
Repeated runs 10
Computational budget 30000 evals.

Details of the parameters can be found in the

documentation of package MOEADr and at the



original MOEA/D-DE reference [5,20,21]. All ob-

jectives were linearly scaled at every iteration to

the interval [0, 1], and the Weighted Tchebycheff

scalarization [22] function was used.

5.3 Experimental Evaluation

We compare the results of the different strate-

gies using the Hypervolume (HV, higher is better)

indicator. For the calculation of HV, the objec-

tive function was scaled to the (0, 1) interval, with

reference points set to (1, 1).

6 Results

Figure 1 depicts the final approximated Pareto

Front of MOEA/D with small population and

with big population as well as MOEA/D-PS, in

the DTLZ1−1 and DTLZ3−1. As we can see,

MOEA/D-PS provides a good trade-off between

the other variants with different population sizes,

since this MOEA/D variant can find a well spread

approximation for the Pareto Front with good con-

vergence, independently of the MOPs in question.

Table 2 shows the mean results obtained by the

MOEA/D-PS with ps = 50 and MOEA/D without

resource allocation with (1) small population size

and (3) big population size, for all test problems. It

is clear that the results of MOEA/D-PS are more

stable when compared to the other methods, since

MOEA/D-PS achives overall good results in most

MOPs, in terms of HV and on the proportion of

non-dominated solutions (NDOM) that it returns

in the final population. Looking at the proportion

of non-dominated solutions (NDOM) in Table 2,

we see that updating a subset of solutions from a

larger population at each iteration resulted in the

highest value on all functions.

6.1 Empirical Attainment Performance

The empirical attainment function (EAF) allows

the examination of solution many sets of different

runs of an algorithm and it can illustrate where

and by how much the outcomes of two algorithms

differ in the objective space [23]. The EAF is based

on attainment surface. The attained surface sepa-

rates the objective space in two regions, one where

Table 2: Means and standard errors for HV and

proportion of non-dominated solutions (NDOM),

for each algorithm-problem pair. The best point

estimate for each problem is highlighted.

HV
MOEA/D-PS Big Pop. Small pop.

DTLZ1−1 0.63 (0.01) 0.51 (0.01) 0.63 (0.02)
DTLZ2−1 0.8 (0) 0.8 (0) 0.79 (0)
DTLZ3−1 0.73 (0.04) 0.49 (0.01) 0.75 (0.03)
DTLZ4−1 0.82 (0) 0.82 (0) 0.81 (0)

NDOM
MOEA/D-PS Big Pop. Small pop.

DTLZ1−1 499.3 (2.21) 248.9 (46.59) 48.2 (1.87)
DTLZ2−1 500 (0) 488.6 (18.03) 50 (0)
DTLZ3−1 500 (0) 178.6 (74.15) 37.3 (7.12)
DTLZ4−1 500 (0) 484.5 (17.82) 50 (0)

the objective space is dominated (attained) by so-

lutions of many sets and another, where the ob-

jective space that is not dominated by those same

solutions [24,25]. For example, the median attain-

ment surface shows regions where dominated by at

least half of the runs [23].

Examining the differences between EAFs.

Figure 2 depicts the differences between the EAFs

of MOEA/D-PS and the EAF the MOEA/D with

different population sizes, on DTLZ1−1. The lower

line, in all Figures, shows the the global best set

of solutions attained over all runs of all algorithms

(grand best attainment surface) while the upper

line shows solutions that are always dominated

(grand worst attainment surface).

Figure 2 shows in shades of red, for the

DTLZ1−1. Looking at the top part of the Figure

(a - left side), we can see that the region where the

EAF of MOEA/D with small population performs

better than MOEA/D-PS, attaining this region at

least 20% of the runs. On the right side of panel

(a - right side) we can see that the differences are

in the opposite direction. These EAF differences

favors MOEA/D-PS, that attains a region that has

solutions in over than 40% of the runs. Now look-

ing at the bottom of the Figure (b - left side), we

can see that MOEA/D with big population cannot

find a EAF region that is better than MOEA/D-

PS. In agreement, MOEA/D-PS attains all the dif-
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Fig. 1: Approximated Pareto Fronts (PF) of the three different variants of MOEA/D. The PF of the

MOEA/D-PS is shown as the green squares, the PF of MOEA/D with a small population is shown as

the blue circles, and the PF of the MOEA/D with a big population is shown as the grey triangles. It is

clear that MOEA/D-PS can find a well spread PF with good convergence speed.

ference between the EAFs.

6.2 Anytime Performance

Besides providing good final results, it is often

desired that an MOEA be capable of returning

a set of reasonably good solutions if interrupted

at any time during the search [26, 27]. We ana-

lyzed the anytime performance effects in terms of

HV values to investigate the impact of different

population sizes and MOEA/D-PS.

Figures 3 illustrates the anytime performance of

the three different MOEA/D variants hypervolume

(higher is better) for all problems. These results

indicate that, in shorter time frames, MOEA/D-

PS shows an improvement over MOEA/D with

a big population because MOEA/D-PS has bet-

ter convergence speed, similar to the speed of

the MOEA/D with a small population, without

shortcomings in terms of quality of the Pareto

Front. On the other hand, for certain problems,

if the optimization is performed with a large num-

ber of functions evaluations, MOEA/D with a big

population size might eventually find better results

than MOEA/D-PS.

7 Conclusion

In this work, we compare the effect of Resource

Allocation strategies in MOEA/D against with dif-

ferent population size settings. This is motivated

by the realization that the n-partial update strat-

egy uses its control parameter (ps) to regulate the

proportion of the population that is selected for

variation at any iteration.

We found strong evidence that MOEA/D-PS

has a more stable performance independently of

the MOP in question since MOEA/D-PS always

performs as one of the best algorithms in our

experiments. The Empirical Attainment Func-

tion (EAF) results illustrate the hybrid behaviour

of MOEA/D-PS, as we can observe that it can

find better EAF regions in all problems tested

when compared to both MOEA/D with small or

big population. The Anytime Analysis of the al-

gorithms show that MOEA/D-PS has a similar

behavior as MOEA/D with a small population,

quickly finding its best results, while maintaining

the benefit of a wider exploration of the search

space that is characteristic of MOEA/D with a big

population.
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(a) MOEA/D-PS (right) performs better towards solutions for objective 2 (low values on the y-axis). On the other
hand, MOEA/D with small population (left) performs better towards solutions for objective 1 (low values on the
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Fig. 2: Differences between the EAFs of MOEA/D with small population (top,left) and MOEA/D-PS

(top, right); and MOEA/D with big population (bottom,left) and MOEA/D-PS (bottom, right). The red

level encodes the magnitude of the observed difference, on the DTLZ1−1.
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Fig. 3: Anytime HV (higher is better) performance of MOEA/D with PS is shown as the green squares,

MOEA/D with population size 500 is shown as the grey triangles and MOEA/D with population size

equals to 50 is shown as the blue circles. The anytime performance of MOEA/D-PS is similar to the

anytime performance of MOEA/D with a small population. In DTLZ2−1 and DTLZ4−1, MOEA/D-PS

performs much similar by MOEA/D with a big population after 15000 evaluations, around 2/3 of the

search. This dynamic indicates that MOEA/D-PS has almost the same convergence speed as MOEA/D

with a small population and that its performance will eventually be surpassed by MOEA/D with a big

population.



MOEA/D-PS progresses with the search as

an algorithm with a small population size and

MOEA/D-PS can explore the search space as an

algorithm with a big population size. The reason

relies on the relationship between different popula-

tions and their advantages in solving a MOP. That

is, a small population size is able to approach the

Pareto Front quickly, but might not be able to ex-

plore and cover this Pareto Front given its limited

size; however, a larger population size will likely be

better at this task, at a higher cost [15]. In sum-

mary, MOEA/D-PS provides a simple yet efficient

approach to mitigate common problems related to

the choice of population size, such as the likely

waste of computation resources induced by a large

population size or the premature stagnation of a

small population size [28].

As future works, we highlight two directions to

extend, improve and explain MOEA/D-PS. The

first is whether MOEA/D-PS would benefit from

adapting the ps value throughout the search, es-

pecially in cases where the performance improve-

ments between iterations are minimal. The sec-

ond is to study the algorithm performance and

behaviour on constrained MOPs, such as the re-

cent CEC’19 problems as the JNPSEC simulation-

based MOPs.
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