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The performance of multiobjective evolutionary algorithms (MOEAs) varies across problems, making it hard to develop new algorithms
or apply existing ones to new problems. To simplify the development and application of new multiobjective algorithms, there has been
an increasing interest in their automatic design from their components. These automatically designed metaheuristics can outperform
their human-developed counterparts. However, it is still unknown what are the most influential components that lead to performance
improvements. This study specifies a new methodology to investigate the effects of the final configuration of an automatically designed
algorithm. We apply this methodology to a tuned Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) designed
by the iterated racing (irace) configuration package on constrained problems of 3 groups: (1) analytical real-world problems, (2)
analytical artificial problems and (3) simulated real-world. We then compare the impact of the algorithm components in terms of their
Search Trajectory Networks (STNs), the diversity of the population, and the anytime hypervolume values. Looking at the objective
space behavior, the MOEAs studied converged before half of the search to generally good HV values in the analytical artificial problems
and the analytical real-world problems. For the simulated problems, the HV values are still improving at the end of the run. In terms of
decision space behavior, we see a diverse set of the trajectories of the STNs in the analytical artificial problems. These trajectories are
more similar and frequently reach optimal solutions in the other problems.
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1 INTRODUCTION

Multiobjective Optimization Problems (MOPs) are problems with two or more conflicting objective functions that
are optimized simultaneously. Several multiobjective evolutionary algorithms (MOEAs) have been proposed to solve
MOPs [3, 14, 45], and for each of these algorithms several variants also have been designed, where some of the
components of the algorithms are modified.
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Recently, there has been an increasing interest in the automatic design of MOEAs [6, 34, 38]. In these approaches, a
configurator recombines components of established MOEAs, creating more effective variants. However, the specific
reasons for these improvements are still not clear. We argue that by understanding how specific components contribute
to the performance of the variants, we can develop new and better components.

In this work, we investigate the question of how to measure the contribution of specific components in a MOEA.
We focus this investigation on understanding the changes of anytime behavior effected on the algorithm by one or
more components. We define anytime behavior as the grouping of the algorithm’s performance in terms of objective
space convergence, and the choices made during the exploration of the decision space. We highlight that this definition
focuses on the behavior of the algorithm when optimizing a problem, thus dissociating from landscape analysis, which
focuses on the structure of the search space.

To analyze the contributions of specific components, we perform a case study on a variant of the MOEA/D algo-
rithm [45] created by an algorithm configurator (irace). The MOEA/D is a popular and efficient algorithm for solving
MOPs and can modify its search behavior on different MOPs.

To understand the contribution of each component, we perform modifications of the above automatically designed
MOEA/D (auto-MOEA/D), by either removing a component, or replacing the component with the corresponding
original in MOEA/D, as appropriate. For each modification, we investigate its performance on a set of problems to
identify the contribution of the component. The methodology is an extension of our work introduced in [30], with the
inclusion of objective space behavior analysis in the form of anytime hypervolume analysis.

This investigation takes the form of a case study on six real-world analytical continuous benchmark problems,
compiled together by Tanabe et. al [41] and two simulated continuous benchmark problems: (1) the problem of selecting
landing sites for a lunar exploration robot [35] and (2) the problem of optimization of car designs [26]. We conduct our
analysis focusing on how these metaheuristics explore both the objective and decision space. Furthermore, we contrast
the automatically designed MOEA (auto-MOEA/D) against each of the variants in terms of their Search Trajectory
Networks (STNs) [28, 37]; the diversity of their populations and the traditional performance metrics. Moreover, we
compare the analytical and simulated problems in terms of the overall metrics of auto-MOEA/D. Finally, we analyze the
similarities between the benchmark problems used for designing auto-MOEA/D and the real-world problems. To the
best of our knowledge, this is the first component-wise analysis of MOEAs on the objective and decision space dynamics
in real-world constrained MOPs. For reproducibility purposes, all the code and experimental scripts are available online
at https://doi.org/10.5281/zenodo.8192256. In this paper, our contributions can be summarised as follows:

(1) We extend our previous study on behavior analysis to a more thorough investigation, by considering the
differences in behavior in both the objective space and decision space during the search progress.

(2) We study the behavior of the components of MOEA/D in analytical and simulated real-world problems.
(3) We analyze the similarities between the benchmark problems used for designing auto-MOEA/D and the real-world

problems.

The paper is organized as follows. Section 2 overviews previous work related to the automated design of algorithms
and constrained problems. Section 3 introduces relevant concepts followed by Section 4 that explains the details of the
methodology used in this work. The automatic design of the MOEA is shown in Section 5. Then, the comparison of
the components set-up is presented in Section 6, and the analysis of the search behaviors dynamics of the different
MOEA/D variants is shown in Section 7. Finally, Section 8 outlines our main findings, limitations and suggestions for
future work.
Manuscript submitted to ACM
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2 RELATEDWORK

2.1 Analysis of Algorithm Behavior

Convergence analysis [16] is a way to describe algorithm behavior, by illustrating the trade-off between exploration
and exploitation in evolutionary algorithms. However, the information of whether a population has converged or not
does not inform the location of this convergence, hence it does not allow the user to know whether the convergence is
premature or not. In this way, understanding the behavior of search and optimization algorithms remains a challenge.

Another way to understand the behavior of an algorithm, especially in the case of multiobjective optimization, is to
visualize and contrast the Pareto front achieved by the algorithm [19–21, 25, 32, 40]. However, in general this approach
focuses on detecting increments in performance, and limits to observing changes in the objective space dynamics.
We argue that analysing the decision space might expand our understanding of the behavior of the multiobjective
optimisation solvers.

Finally, another way to understand algorithm behavior is through Search Trajectory Networks (STNs) [36, 37], which
illustrate as a graph how the algorithm explores the decision space. Recently, STNs were generalized to multiobjective
algorithms [28], and we use these MOP-STN models as one of the tools to discriminate behavior changes in MOEA
components.

2.2 Automatic Design of Evolutionary Algorithms

Most approaches to the automatic design of evolutionary algorithms focus on creating templates that can instantiate
many algorithms and their parameter settings for performance improvements. For example, there have been studies
to automatically design NSGA-II [34] and MOEA/D [6] on commonly used benchmark sets. Moreover, two seminal
examples are the works of Bezerra et al. [7, 9], which proposed a component-wise MOEA template that instantiates
multiple existing frameworks for continuous and combinatorial optimisation MOPs. Their research efforts mainly focus
on exploiting the automatic configuration to increase the performance of multiobjective algorithms in benchmark
problems without constraints.

We also highlight the work of Radulescu et al. [38], which focuses on improving the performance of multiobjective
metaheuristics. These works are insightful approaches; however, they concentrate on finding well-performing configu-
rations of multiobjective algorithms. On the other hand, there are few studies in the context of the automatic design of
algorithms that focus on the effect of the different components on the performance of the algorithm.

2.3 Behavior Analysis in the Continuous Multiobjective Domain

There are few works in the continuous multiobjective domain related to behavior analysis. Some of the few examples
with works on the relations between behavior and population size [24] and between behavior and solution quality
and time [39]. In contrast more works studied the behavior of multiobjective algorithms in the combinatorial domain.
Two of these works focus on understanding selection and population size effects on the algorithms’ ability in terms
of dominance status, membership to the Pareto optimal set, recentness of discovery, and how their numbers change
generation by generation [1, 22]. Another work explores how the relationships of already known and controllable
structures, such as modality and ruggedness to understand the working principles, behavior, and the performance of
MOEAs [2]. Finally, few studies have considered the contribution of individual components to MOEAs performance [9].
Furthermore, in most cases, performance is evaluated in unconstrained problems or problems where constraints are
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Algorithm 1 MOEA/D outline
1: Initialize population and decomposition vectors.
2: while Computational budget is not meet do
3: Define Neighbourhood relations.
4: If partial update is used, select subset of solutions to update.
5: Else, all solutions are updated.
6: Generate candidates from the updated solutions and their neighbors.
7: Evaluate the candidates on their respective subproblems.
8: Update the population using the candidates.
9: Save non-dominated solutions in UEA.
10: if restart criteria is met, regenerate the population.
11: end while

simple to address [8, 41, 43]. These constraints invalidate some solutions, which makes finding a set of feasible solutions
a challenging task.

3 PRELIMINARIES

MOEA/D [45] is a popular and efficient algorithm for finding good sets of trade-off solutions for MOPs. The key idea of
MOEA/D is to create a linear decomposition of the MOP into a set of single-objective subproblems. Decomposing the
MOP in various single-objective subproblems makes the algorithm very flexible for dealing with constraints because
adding a penalty value is straightforward: MOEA/D adds a penalty value related to the amount of violation of the
constraint for each of the subproblems. Given the nature of the single-objective subproblems, MOEA/D can easily use
multiple constraint handling techniques (CHTs).

The MOEA/D template we propose for instantiating and designing variants of this metaheuristic is shown in
Algorithm 1. We use the generational version of MOEA/D incremented with the Unbounded External Archive (UEA).
The UEA is used to keep all nondominated solutions found by a multiobjective optimizer during the search process.
Solutions in the archive are only used as the output of the algorithm and are stored in a way that they do not affect the
search run [5, 42].

3.1 Automatic Design Configurator

For automated design, we use Iterated Racing (irace) [33]. The goal of using irace is to be able to tune the set of
components of an algorithm over a set of optimization problems to find a configuration that performs well on average in
all problems. After fine-tuning the MOEA/D with irace, we conduct an ablation analysis [18, 33] to help us understand
the choice of components values and whether each of these choices effectively improves the MOEA/D performance.
This analysis investigates the differences between configurations. We conduct an ablation analysis between a target
configuration selected 1 and the best configuration found by irace.

3.2 Search Trajectory Networks (STNs) for MOPs

We use Search Trajectory Networks as a tool for visualization following the method described in [28, 30]. In an STN
model, each solution in the decision space is mapped to a location. Similar solutions are generally mapped to the same
location, as the locations represent a partition of the decision space. The network models are extracted from data

1In our case, we select the first configuration tried by irace during the tuning process.
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obtained during several runs of the studied algorithm(s). A network model requires defining its nodes and edges. In
an STN model, nodes are the locations in the search trajectories visited by a given algorithm, and edges connects two
consecutive locations in the trajectory. A strength of network models is that they can be visualized. When decorating
the networks for visualization, it is possible to highlight attributes of the nodes and edges that are relevant to the
search process. In these visualizations, the size of nodes and the width of edges are proportional to how many times
the algorithms visited them during the aggregation of runs used to extract the model. Visualizations use force-directed
graph layout algorithms as implemented in R package igraph [13].

The key idea of this method is that we keep track of a small number of decomposition vectors, match a representative
solution to a vector, and then merge the vector trajectories of each vector into a single multiobjective STN. The merged
STN model merges the 𝑛 STNs of each decomposition vector and is obtained by the graph union of the 𝑛 individual
graphs. The merged graph contains the nodes and edges present in at least one of the vectors graphs. Attributes are
kept for the nodes and edges, indicating whether they were visited by both algorithms (shared) or by one of them only.
Finally, we have the merged STN models, where different MOEAs are combined into one single merged STN model. The
merged STNs allow us to directly visually compare how distinct variants explore the decision space [30]. In the merged
models, there is the notion of shared nodes, which are nodes visited by more than one algorithm and are indicated in
grey colour in the network visualization.

3.3 Network and Performance Metrics

We use the following STN metrics to assess the global structure of the trajectories and bring insight into the behavior
of the MOEAs modelled. These metrics are (1) the number of unique nodes, (2) the number of unique edges and (3) the
number of shared nodes between vectors and (4) the number of solutions in the Pareto front.

For reference, we use the following criteria to compare the results of the different strategies, based on the metric
analysis done in the work of [30]: final approximation hypervolume (HV), the volume of the n-dimensional polygon
formed by reference points and solutions. It is worth noting that additional network and MOP metrics could also be
considered. These metrics are summarised in Table 1. We also use the population variance metric.

Table 1. Description of decision space metrics

Metric Description
Nodes Total number of nodes, which corresponds to the number of unique locations visited.
Edges Total number of edges, the number of unique search transitions.

Variance Dispersion of the population in the decision space.
#PF Number of solutions in the theoretical Pareto front or in the best approximation to the Pareto front.

4 BEHAVIOR ANALYSIS METHODOLOGY

Here we define a methodology to measure the differences in decision and objective space dynamics of variants of an
algorithm that alter a single component from the base algorithm. Our reason for using such methodology is to identify
the most influential components of an algorithm and how they affect the search space dynamics in different problems.
Thus, we can identify better the influence of the considered component, even if such method explores a reduced part of
the possible algorithm versions.

First, we use irace to automatically design a tailor-suited MOEA (auto-MOEA) that performs well in a set of problems.
Secondly, we modify auto-MOEA to create many variants and each one of these variants have only one component
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that differs from auto-MOEA. These variants are obtained by: (1) removing a component if possible; (2) otherwise,
replacing this component with the corresponding one from the original MOEA. Thus, we have the multiple MOEAs:
the auto-MOEA plus one variant for each component. The idea here is to be able to capture the effects of each one
of the components individually. This step to create variants is done manually, based on the users expertise about the
components.

Then, we collect log data of the executions of all variants and the base algorithm during their run in the problems
of interest. This log data contains the parameters of the non-dominated solutions of each generation as well as their
objective space values and the solution’s feasibility 2. This data is processed following the approach described in
Subsection 3.2 for analysing how the components affect the decision space exploration of such MOEA. To measure the
different behaviors, we use metrics and visuals from the Search Trajectory Networks (STNs) [28, 37] combined with a
population diversity metric.

We also use the log data to calculate the anytime HV performance of the algorithm over the evaluations and the
number of solutions in the Pareto front3. To verify the impact of the variant, we calculate the difference value of the
metrics of each variant to the auto-MOEA.

5 DESIGNING AUTO-MOEA/D

We analyse the components of a MOEA/D instance that was automatically designed. This design process was done in a
component-wise framework, similar to the protocols used by Bezerra et al. [9] and Campelo et al. [12]. We extend the
MOEADr package [11] to introduce options for population restart and the most representative Resource Allocation
(RA) method, called the partial update of the population [27, 29].

5.1 Variable Components Search Space

The configuration space used in our experiments contains the algorithm components and numerical parameters of the
MOEA/D framework. These are shown in Table 2. Special attention is required with the variation operators: Differential
Evolution (DE) mutation and polynomial mutation. They are always performed sequentially, first DE and then the
polynomial mutation. Thus, the order of the stack of operators is kept fixed, but the parameter values are variable.
Similar attention should be given to the restart strategy, where only the choice of using this strategy is explored.

We choose to fix some MOEA/D components to reduce the search space for the irace configurator. The fixed
components are the computational budget, the objective scaling and the constraint handling technique (CHT). These
fixed components are always present in every configuration of the MOEA/D that irace generates: (1) the number of
functions evaluations is set to 100000 in order to grasp all possible behaviors of the automatically designed algorithm
during the run; (2) all objectives were linearly scaled at every iteration to the interval [0, 1]; (3) we use the Dynamic
CHT [23], which starts with a small penalty value, increases it across the iterations to focus on the diversity of feasible
solutions, and then later focus on the convergence of those solutions. It is defined by 𝑓

𝑎𝑔𝑔

𝑝𝑒𝑛𝑎𝑙𝑡𝑦
(𝑥) = 𝑓 𝑎𝑔𝑔 + (𝐶 ∗ 𝑡)𝛼 ∗𝑣 (𝑥),

where 𝐶 = 5 and 𝛼 = 2 are constants we defined based on the following works [23, 43], 𝑡 is the generation number and
𝑣 is the total violation of a solution.

2For technical reasons we also keep the execution number.
3We use the theoretical Pareto front if it is available. Otherwise, we use the approximation to the Pareto front.
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Table 2. Components search space.

Component Domain
Decomposition vector generator Uniform or Sobol[44]
Population size 100 or 500

Aggregation function Weighted Tchebychef or
Adjusted weighted Tchebychef

Update strategy Best, 𝑛𝑟 = [1, 20]
Restricted,𝑇𝑟 = [4, 20]

Neighbourhood function 𝑇 = [10, 100]
𝐷𝑒𝑙𝑡𝑎 = [0.1, 1]

DE mutation 𝐹 = [0.1, 1]

Polynomial mutation 𝜂𝑚 = [1, 100]
𝑝𝑟𝑜𝑏 = [0, 1]

RA (Partial update strategy) True 𝑛 = 0.10, 0.15, 0.20, 0.25
False, not used

Restart strategy True, every 20000 evaluations
False, not used

5.2 Configurator Setup

We use the irace configurator [33] to automatically assemble and design a MOEA/D configuration based on the
components available in the MOEADr package extended with the options for population handling mentioned above.
We run irace with its default settings, except for the number of elite configurations tested, which we increase from 1 to
7, following Campelo et al. work [12]. We run irace with a budget of 15000 runs.

5.3 Benchmark Problems for Configuration

We use the DASCMOP benchmark set [17] to design the auto-MOEA/D. This set has nine constrained test functions:
DASCMOP1-6, each with eleven constraints, and DASCMOP7-9, each with seven constraints. The constraints can be
modified to consider three types of difficulties: type-I considers diversity-hardness, type-II considers feasibility-hardness
and type-III considers convergence-hardness. More information about the problems and these difficulty triplets can
be found in [17]. We use the implementation of the test problems available from the Pymoo python package [10]. To
have a more balancing training function set, we change the hardest constraints difficulty triplet, numbered 16, from our
previous work [30], to a set of triplets ranging from low to high difficulty and numbered 4, 8, 12 and 16.

5.4 Benchmark Problems for Behavioral Analysis

The real-world analytical multiobjective optimization problems used were selected from the new test suite introduced
by Tanabe et. al [41]: (1) bar truss design (CRE21), the objectives are to minimize the structural weight and displacement
resulting from the joint; (2) design of welded beams (CRE22), the objectives are to minimize the cost and the final
deflection of the welded beams; (3) disc brake design (CRE23), the objectives are to minimize brake mass and decrease
downtime; (4) side impact design of the car (CRE31), the objectives are to minimize the average weight of the car, the
average speed of the column V responsible for supporting the impact load and the force experienced by a passenger; (5)
conceptual submarine project (CRE32), the objectives are to minimize the cost of transportation, the weight of the light
vessel and the annual cargo transport capacity; (6) water resource planning (CRE51), the objectives are to minimize the
cost of the drainage network, the cost of installing the storage center, the cost of installing the treatment center, the
expected cost of flood damage and the expected economic loss due to the flood.
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The real-world simulated MOPs used are the two recently proposed problems by the Japanese evolutionary computing
society: (1) Mazda benchmark problem (MAZDA): this is a discrete optimizing problem to design MAZDA cars, where
the objectives are to maximize the number of parts common to three different cars and minimize the total weight of
the car [26]; (2) lunar landing site selection (MOON): the goal is to select landing sites coordinates (x,y) for a lunar
exploration robot to land with the objectives of minimizing the number of continuous shaded days, minimizing the
inverse of the total communication time 4, and minimizing the tilt angle [35].

5.5 Evaluation Metrics for the Automatic Design

Analysing MOP solvers considering only their final approximation provides limited information related to these
algorithms’ performance since any MOP solver should return a suitable set of solutions at any time during the search
[15, 39, 42, 46]. Here, we analyse the anytime performance effects in terms of hypervolume (HV) values to investigate
the impact of different configurations of MOEA/D on their Unbounded External Archive. We run auto-MOEA/D 10
times on each of the problems.

We use the following method to compare the results of the different strategies: we calculate the accumulative HV
over the search progress to quantify the HV anytime performance. At every 1000 evaluations, we calculate the HV of
the solutions in the UEA at that iteration, using the reference point as: 11, over the number of objectives; following the
work of Bezerra et al. [9]. Then, we sum all values to have an approximated evaluation of the anytime HV curve.

Fig. 1. irace output with the frequency of the different choices of components and parameters.

4i.e. maximizing the total communication time.
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Figure 1 shows the frequency of the different choices of components and parameters after the tuning and ablation
design is performed. As in [33], the ablation analysis is done to better use the available computational resources, focusing
on better-performing configurations found by an automatic configuration method, and proceeds by changing one
parameter at a time, focusing more on well-performing configuration, instead of more common useful configurations.

There is a consensus over the components and parameters studied here. This suggests that irace is confident that the
choice of components used in the auto-MOEA/D design has at least an adequate overall performance in the problems
used during the configuration process.

5.6 Performance of auto-MOEA/D

Here, we briefly describe the performance of auto-MOEA/D in terms of HV 5 and variance of the final population, and
the STNs metrics: number of nodes, edges and shared nodes. For the calculation of HV, the objective function was
scaled to the (0, 1) interval, with the reference point of 1.1, repeated over the number of objectives. Thus, the maximum
HV is 1.21 for MOPs with two objectives or 1.331 for MOPs with three objectives after scaling the values. Instead of
showing the achieved HV value of the auto-MOEA/D, we calculate how close the performance of this algorithm is to
the maximum possible HV value (max(HV)). Values close to 0 indicate no HV performance 6 while values close to 1
indicate high performance.

Table 3. hypervolume ratio (HV)/max(HV), HV Standard Deviation, Standard Deviation, Nodes, Edges, population variance, and the
number of solutions in the theoretical Pareto front (#𝑃𝐹 ) of the auto-MOEA/D for the DASCMOP problems.

auto-MOEA/D
MOP HV/max(HV) SD Nodes Edges Variance #𝑃𝐹

DASCMOP1 0.931 0.002 4268 4812 0.514 212
DASCMOP2 0.964 0.002 4821 5480 0.45 279
DASCMOP3 0.962 0.007 7175 8595 0.494 44
DASCMOP4 0 0 2316 2890 4.812 0
DASCMOP5 0.095 0.362 2352 2998 5.089 0
DASCMOP6 0 0 2313 2901 5.022 0
DASCMOP7 0.035 0 2388 3139 5.035 0
DASCMOP8 0 0 2465 3235 4.372 0
DASCMOP9 0.849 0.397 15756 19233 0.437 10

MOON 0.392 0.452 1375 3012 0.007 2
MAZDA 0.016 0.026 5443 5531 5.366 0
CRE21 0.989 0.011 4774 6370 0.1 0
CRE22 0.995 0.001 2047 2192 0.119 12
CRE23 0.608 0.003 7774 10369 0.335 1
CRE31 0.567 0.002 5259 5497 0.72 2
CRE32 0.756 0.011 14976 17743 0.331 0

The different metric values for the auto-MOEA/D are shown in Table 3. We can see that higher HV values correspond
to a high number of nodes and edges and lower final populational variance values for the DASCMOP1, DASCMOP2,
DASCMOP3 and DASCMOP9 problems. In contrast, the opposite happens for the other DASCMOP problems. Given the
low HV performance, we speculate that auto-MOEA/D has a premature convergence probably to local optima areas of
the decision space.
5higher is better.
6probably the approximation found by auto-MOEA/D is out of the range of the reference point.
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The HV performance of auto-MOEA/D deteriorates for the simulated MOON and MAZDA problems. There is no
agreement in values of the number of nodes, edges and variance found for auto-MOEA/D in this set of problems,
suggesting that each problem has different features in relation to the other. Interestingly, the number of nodes and
variance metrics are the lowest in the MOON problem which might suggest that the population gets trapped in local
optima during the run. This could also explain partially why the HV performance is low. For the MAZDA problem
auto-MOEA/D also has a poor HV performance, but a higher number of nodes, edges and variance in comparison to
the MOON problem.

For the CRE problems, we see that the HV performance is close to the DASCMOP1, DASCMOP2, DASCMOP3 and
DASCMOP9 problems. In general, the other metrics follow a similar comparison trend between CRE problems and
DASCMOP. Thus, we understand that there are similarities among the artificial DASCMOP problems and the CRE
problems and limited similarities with the more challenging simulated MOON and MAZDA problems.

Finally, we comment about the results on constraint difficulty change between our previous work and this current
study. On contrary to our expectations, having different constraints difficulty levels lead to improvements the HV
performance of auto-MOEA/D in the easy problems (DASCMOP1-3 and 9), but no clear increments in performance for
the hard set of problems (DASCMOP4-8).

6 COMPARISON OF THE COMPONENTS

Here we use our methodology to investigate the effects of the final configuration of a machine-designed multiobjective
algorithm. This analysis aims to measure the differences in the decision and objective space dynamics among several
variants from the MOEA and, through these measures, identify the most influential components of the automatically
designed algorithm.

Table 4. Auto-MOEA/D setup and the variants under analysis. For each variant, only one component is changed, while the other
components are the same as auto-MOEA/D.

Auto-MOEA/D setup, and its Variants
auto-MOEA/D Component variant

Decomposition + pop. size Decomposition + pop. size
𝑆𝑜𝑏𝑜𝑙, 100 𝑆𝐿𝐷, 300

Aggregation function Aggregation function
𝐴𝑊𝑇 𝑊𝑇

Update Update
𝐵𝑒𝑠𝑡 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

𝑛𝑟 = 9 𝑛𝑟 = 2
Neighbourhood pars. Neighbourhood pars.

𝑇 = 22 𝑇 = 20
𝐷𝑒𝑙𝑡𝑎 = 0.9822 𝐷𝑒𝑙𝑡𝑎 = 0.9
Operators pars. Operators pars.
𝐷𝐸 : 𝐹 = 0.4908 𝐷𝐸 : 𝐹 = 0.5

Polynomial: 𝜂𝑚 = 80.9844 Polynomial: 𝜂𝑚 = 20
Polynomial: 𝑝𝑟𝑜𝑏 = 0.4556 Polynomial: 𝑝𝑟𝑜𝑏 = 0.3

Restart Restart
𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒

RA RA
𝑃𝑎𝑟𝑡𝑖𝑎𝑙, 5% 𝐹𝑎𝑙𝑠𝑒
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To analyse these behavioral effects of the different variants, we compare the auto-MOEA/D described in Section 5
against variants with at most one single component altered. We obtain these variants by changing or removing a single
component of the auto-MOEA/D at a time. This is done by either (1) removing the component from the algorithm when
possible or (2) changing its parameters to its counterpart in the traditional MOEA/D.

Table 4 lists the auto-MOEA/D on the left side, which is generated by the algorithm in section 4, and the variants on
the right side. These variants are not necessarily components generated by auto-MOEA/D. When total removal of the
component is not possible, we use the standard version of these components introduced by Hui Li and Qingfu Zhang
in MOEA/D-DE [31], and commonly found in the literature. Thus; there are seven variants to analyse, which added
to auto-MOEA/D itself least to a total of eight algorithmic variations of the MOEA/D framework. These variations
are compared quantitatively and visually in terms of their STN models to detect which components produce the most
extensive changes.

7 BEHAVIORAL DYNAMICS

To quantitatively analyse the dynamics of the search progress of the different variants of MOEA/D, we model the
search dynamics using STNs for each pair of auto-MOEA/D and an auto-MOEA/D variant, leading to seven different
pairs. We highlight that given the lower impact on performance of the decomposition and population size observed on
the original paper (pre-extension, see [30]) and since that most works on the literature focus on population size and
decomposition methods(to name only a few [1, 4, 22, 24, 29]), we combine these components into one, and direct our
studies towards the other components.

We base our quantitative analysis on the traditional multiobjective metrics hypervolume (HV); the number of: nodes,
edges and shared nodes of the STN models; and the populational variance. For the HV, we use the reference point of 1.1,
repeated over the number of objectives. We linearly scaled all objectives to the interval [0, 1], for a more straightforward
comparison among the algorithms. We run each variant 10 times on each of the problems.

(a) DASCMOP problems. (b) Simulated problems. (c) Analytical problems.

Fig. 2. Correlation matrix among the different metrics. We find some correlation among HV and variance of the final population; and
correlation between the number of nodes and edges.
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7.1 Metrics Analysis

Figure 2 shows the correlation matrix among the different metrics studied, considering the results of the MOEA/D
variants for the DASCMOP, simulated 7 and analytical 8 problems. Since the number of nodes and edges have a high
correlation, we remove the number of edges metric from our analysis. The other STN metrics, together with the final
population variance are on the decision space analysis; thus, we use them in our following analysis to strengthen the
study. Furthermore, we see a correlation between the HV metric and the population variance. This correlation suggests
a link between this decision space metrics and HV increments of performance. Moreover, we understand that there
might exist a connection between solution diversity, represented by the variance, and overall performance and that this
connection is problem-independent.

7.2 Objective Space Behavior

Fig. 3. DASCMOP1 - HV anytime performance of auto-MOEA/D and its variants. The update strategy and not using restart lead to
worse performance.

Here, we analyse the anytime performance effects in terms of HV values to investigate the impact of different
components variants and auto-MOEA/D in analytical and simulated real-world problems. We first start our analysis
using the DASCMOP1-3 and 9, Figures 3, 4, 5, 6, as auto-MOEA/D has a very poor performance in the other problems 9.
We can see that for these problems, increments in HV values are followed by periods without changes in performance
for almost all of the variants. We can also see that the variants converge before half of the search, except for the update
variant in the DASCMOP1-2 problems. For DASCMOP9, the convergence happens a little later, but the HV curves for
this problem are overall similar to the other problems.

For the CRE problems, all auto-MOEA/D variants converge at around 25000 evaluations, as we can see in Fig-
ures 7, 8, 9, 10 and 11. The exception is for the CRE21 problem, in Figure 7, where not using restart converged to a lower
HV value than the other variants. This is similar to the convergence behavior we found for the DASCMOP problems,
although the curves here are more balanced. It seems that DASCMOP1-3 and 9 and the CRE problems have little impact
on the ability of the auto-MOEA/D variant to perform well in terms of anytime HV performance.
7MOON and MAZDA.
8CRE family.
9All Figures for the anytime HV performance are available in Zenodo https://zenodo.org/record/8192256
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Fig. 4. DASCMOP2 - all variants converge to the maximum HV, with the exception of the update strategy.

Fig. 5. DASCMOP3 - all variants converge to the maximum HV before half of the search.

The same observation cannot be made for the MAZDA and MOON problems. We can see in Figures 12 and 13 that
most of the variants have trouble improving the HV over the evaluations and that the best variant is problem-dependent.
For both problems, increments in HV values are followed by periods without changes in performance for almost all of the
variants. This is similar behavior to the DASCMOP problems; however, here we see that the periods without increments
are much longer. Interestingly, for the MAZDA problem not-using restart has generally very low performance during
almost all of the search progress to only at the very end improving the performance substantially.

7.3 Decision Behavior Dynamics

Based on the results shown above, we compared the auto-MOEA/D and its variants in terms of HV, final population
variance, and the STNs metrics: number of nodes, shared nodes and the number of solutions in the best approximation
to the Pareto front 10.. For a more straightforward comparative analysis, we calculate the difference between the results
10for the DASCMOP this is the theoretical Pareto front
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Fig. 6. DASCMOP9 - the aggregation variant converges to high HV values faster than the other variants.

Fig. 7. CRE21 - the variants converge to about the same HV value, with the exception of the no-restart.

found by the variants to the results found by the auto-MOEA/D (Table 3). We show the ΔHV, Δnodes, Δvariance 11.
For all of these metrics, positive values indicate larger values in relation to the base algorithm, while negative values
indicate the opposite. The number of shared nodes and solutions in the Pareto front are the two absolute metrics.

The different metrics for the variants are shown in Table 5. Given that we already discussed the HV values above, we
focus here on the other metrics shown in this Table.

For the DASCMOP problems, all auto-MOEA/D variants find solutions in the Pareto front, suggesting that reaching
the theoretical Pareto front of these problems is not a challenge. The update and the operators variants generally have a
lower number of nodes and final population variance. Interestingly the aggregation function variant seems to have
little effect in most of the metrics, and we highlight that the number of shared nodes is one or two orders of magnitude
higher than the other variants for the DASCMOP3-9. Changing the decomposition method and the population size
leads to more differences in areas of the decision space explored but doesn’t affect much the overall HV performance.
11metric value of auto-MOEA/D minus metric value of the variant.

Manuscript submitted to ACM



Multiobjective Evolutionary Component Effect on Algorithm behavior 15

Table 5. ΔHV ; number of Δnodes; Δvariance of the population, number of Shared nodes and the number of solutions in the Pareto
front (#PF) given the different variants of the auto-MOEA/D in terms of components on the constrained problems.

Decomposition + pop. size variant Aggregation function variant
MOP ΔHV SD Δnodes Δvariance Shared #PF ΔHV SD Δnodes Δvariance Shared #PF

DASCMOP1 -0.001 0 313 -0.012 1 478 0 0.002 -86 0.03 703 424
DASCMOP2 -0.001 0 757 -0.005 3 556 0 0.002 90 0.007 743 611
DASCMOP3 0 0 1884 0.026 3 66 0.003 0.007 59 0.077 790 78
DASCMOP4 -0.116 0.043 103 -1.847 4 0 0 0 -10 -0.291 2141 0
DASCMOP5 0 0.058 183 -1.532 5 0 0.114 0.041 -6 -0.13 2168 0
DASCMOP6 -0.113 0.041 159 -1.138 5 0 0 0 0 -0.112 2140 0
DASCMOP7 0 0 178 -1.315 7 0 0 0 26 0.015 2196 0
DASCMOP8 -0.124 0.391 234 -0.835 7 0 0 0 15 -0.108 2262 0
DASCMOP9 0.126 0.53 3483 0.006 6 12 -0.123 0.024 1162 -0.011 2618 17

MOON -0.113 0.371 272 -0.076 343 2 0.096 0.451 7 0.004 911 2
MAZDA 0.007 0.02 3682 -4.762 5 0 0.012 0.023 -118 0.144 1790 0
CRE21 -0.007 0.007 1753 0 192 0 -0.001 0.008 22 0.034 4562 0
CRE22 0 0.001 198 0.064 27 19 0 0.001 69 -0.033 551 15
CRE23 0.009 0.004 2862 -0.007 374 3 0.001 0.005 -101 -0.014 1362 2
CRE31 0.01 0.001 1433 -0.01 4 5 0.004 0.004 439 0.048 556 7
CRE32 0.003 0.002 6693 0.025 17 0 0.01 0.019 339 0.109 1267 0

Update variant Neighbourhood parameter variant
DASCMOP1 0.774 0.569 954 -0.145 258 284 0 0.002 -67 0.033 214 408
DASCMOP2 0.925 0.508 -175 -0.035 267 385 0 0.002 -31 -0.009 222 559
DASCMOP3 -0.004 0.015 1338 -0.038 328 73 0.001 0.007 423 0.005 263 87
DASCMOP4 0 0 -1786 0.277 410 0 0 0 127 1.398 212 0
DASCMOP5 0.114 0.041 -1793 0.358 403 0 0.114 0.041 120 1.148 214 0
DASCMOP6 0 0 -1777 0.411 402 0 0 0 111 1.576 211 0
DASCMOP7 0 0 -1908 1.812 420 0 0 0 -69 0.993 229 0
DASCMOP8 0 0 -1890 -0.364 448 0 0 0 2 -0.82 246 0
DASCMOP9 -0.023 0.407 3208 -0.208 363 13 -0.128 0.051 366 0.035 268 21

MOON 0.123 0.043 -233 0.002 875 2 -0.103 0.432 -16 -0.03 743 2
MAZDA 0.007 0.026 1107 0.367 230 0 0.008 0.025 -149 -0.472 209 0
CRE21 0.002 0.009 -3306 -0.005 797 0 0.007 0.014 -314 0 860 0
CRE22 0 0.001 158 0.028 445 14 0 0 85 0.064 380 17
CRE23 0.005 0.009 969 0.013 1598 1 0.001 0.005 249 -0.013 1299 1
CRE31 -0.001 0.003 224 0 444 7 0.002 0.002 164 -0.038 414 8
CRE32 0.011 0.031 2767 0.033 745 0 -0.003 0.013 950 0.076 607 0

Operators variant No-restart variant
DASCMOP1 0.001 0.002 1389 -0.109 216 461 0.226 0.474 3739 0.038 427 276
DASCMOP2 -0.001 0.002 1129 0.004 223 789 0.004 0.003 3893 0.004 416 356
DASCMOP3 0.005 0.005 41278 0.07 266 79 0.007 0.004 4804 0.043 782 54
DASCMOP4 -0.357 0.574 -361 1.549 215 0 -0.233 0.490 2142 0.352 168 0
DASCMOP5 -0.245 0.578 -291 1.488 217 0 0 0.363 2170 0.947 174 0
DASCMOP6 -0.36 0.58 -273 1.09 215 0 0 0 2134 1.032 172 0
DASCMOP7 -0.656 0.691 -471 1.454 220 0 -0.124 0.392 2241 0.345 135 0
DASCMOP8 -0.787 0.668 -537 0.311 234 0 -0.122 0.384 2304 -0.068 143 0
DASCMOP9 -0.126 0.013 1618 0.048 266 16 -0.014 0.402 11593 -0.124 2202 18

MOON -0.163 0.364 135 -0.026 727 2 0.307 0.379 1267 -0.011 108 2
MAZDA 0.005 0.024 -1323 1.288 237 0 0.01 0.029 1113 -0.709 906 4
CRE21 0.017 0.040 643 0.054 787 0 0.27 0.423 4318 0.051 416 0
CRE22 0 0 96 0.053 393 17 0 0.001 1849 0.079 157 14
CRE23 0 0.002 -2440 0.002 1478 1 -0.053 0.003 3186 0.005 1336 1
CRE31 -0.002 0.001 -22 0.001 447 8 -0.002 0.004 3546 -0.038 619 2
CRE32 0 0.012 850 -0.002 665 0 -0.003 0.016 7569 0.006 2310 0

No-RA variant
DASCMOP1 0 0.002 -37 -0.061 13 449
DASCMOP2 -0.001 0.002 240 0.005 12 537
DASCMOP3 0.005 0.006 -75 0.012 15 70
DASCMOP4 0 0 -108 0.586 11 0
DASCMOP5 0.114 0.041 -45 -0.014 13 0
DASCMOP6 0 0 -97 0.018 12 0
DASCMOP7 -0.121 0.381 -58 0.51 14 0
DASCMOP8 -0.118 0.374 -49 -0.52 15 0
DASCMOP9 0.008 0.395 493 -0.093 12 14

MOON -0.052 0.406 -14 -0.052 417 2
MAZDA 0.006 0.03 -141 0.435 12 0
CRE21 0.004 0.01 78 0.065 550 0
CRE22 0 0 -55 0.053 35 24
CRE23 -0.013 0.002 -286 -0.013 622 2
CRE31 -0.001 0.002 53 -0.004 24 8
CRE32 -0.002 0.017 1 36 -0.001 39 0
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Fig. 8. CRE22 - all variants converge to maximum HV at about one third of the search.

Fig. 9. CRE23 - the variants converge to sub-optimal HV values at about one third of the search.

The same is true for the no-RA variant. This indicates that changing how MOEA/D works with the population during
the search can affect how the decision space is explored but doesn’t correspond to increments in HV performance for
these problems.

However, for the simulated and analytical real-world problems, we can observe little similarities among the five
problems analyzed. This suggests that, unlike the DASCMOP set, the features of each of the simulated and analytical
problems impact the auto-MOEA/D differently. For the MOON problem, we can see that the no-restart variant explored
fewer areas of decision space, as we can see by the higher difference in the number of nodes. The number of shared
nodes is the lowest among all variants, which suggests that auto-MOEA/D and the no-restart variant visit different
areas of the decision space. That said, this variant was still able to find solutions in the approximated Pareto front. This
suggests that the initial population has a high impact on the search exploration and all methods can follow a path to
optimal solutions. We understand that this problem could be seen as a multimodal problem with at least one funnel to
optimal solutions; however, more work needs to be done to validate this.
Manuscript submitted to ACM
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Fig. 10. CRE31 - similarly for CRE23, the variants converge to sub-optimal HV values at about one third of the search.

Fig. 11. CRE32 - Better performance than CRE31, but the variants again converge early to sub-optimal values.

Now, moving to the results of the MAZDA problem. For this problem, the variant that leads to less number of shared
nodes, with only 5, the highest number of nodes and the highest final population variance is the decomposition+pop. size
variant. This indicates that this variant can visit more areas of the decision space that are not explored by auto-MOEA/D
while also having the final population spread to many different areas (given the higher variance). This could mean that
choosing the right decomposition method and population size is critical for this problem. To our surprise, this is the
only problem where no-restart leads to a noteworthy amount of solutions in the approximation to the Pareto front.
Overall, these results show that these problems might have a set of unique characteristics in comparison to the other
problems studied here.

Finally, the results of the CRE problems show that in terms of the number of nodes the no-restart variant is the one
that has the biggest differences, exploring less the decision space and that not using RA was able to increase the number
of solutions in the approximation to the Pareto front, with little differences in the other metrics. That is, the aggregation
function has generally the highest number of shared solutions in the two sets of problems and the no-restart variant
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Fig. 12. MOON - the HV values are much different among the variants, with the operators variant achieving the best results and
not-restarting has a big negative impact.

Fig. 13. MAZDA - all variants perform badly, with auto-MOEA/D achieving the highest HV value.

has about the same difference in terms of the number of nodes. This is in agreement with Table 3. Thus we believe that
DASCMOP1-3 and 9 might share similar problems characteristics with the CRE problem set.

7.4 STNs Extension for Pairs of MOEAs

For creating merged STN models of pairs of MOEAs, we first need to create one STN for each algorithm. To create the
STN of a single algorithm, we follow a recently proposed methodology [28, 30].

As discussed (Section 3), we extend this approach by merging the trajectories of two of these STNs by joining the
two STNs graphs. This merged STN model contains the nodes and edges present in the STN of at least one algorithm.
Attributes are kept for the nodes and edges, indicating whether they were visited by both algorithms (shared) or by one
of them only.
Manuscript submitted to ACM
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(a) DASCMOP1 (b) DASCMOP2

(c) DASCMOP3 (d) DASCMOP4

Fig. 14. STN of auto-MOEA/D and different variants on the easy DASCMOP group. We see a diverse set of behaviors, from interlinked
trajectories on the upper side to trajectories that visit distinct regions of the decision space on the bottom side.

Moving on to the STNs visualisations, Figures 14, 15, 16 and 17. We selected visualisations of a representative variant
for each problem. Considering the colours used in the STN visualisations, yellow squares indicate the start of trajectories,
and black triangles indicate the end of trajectories. The red colour shows the Pareto optimal solutions, and light grey
circles show shared locations visited by both algorithms in that MOP. Finally, the trajectories of each algorithm are
shown in different colours: purple for the auto-MOEA/D and green for the variant.
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(a) The trajectories of auto-MOEA/D and the no-RA variant over-
lap and share multiple locations, as shown by the grey nodes.

(b) The trajectories of auto-MOEA/D and the no-RA variant share
few locations (not visible).

Fig. 15. STNs of auto-MOEA/D and two variants on the MOON (left) and MAZDA (right) problems. The MAZDA problem has a
bigger effects the trajectories of the variants.

(a) The trajectories of auto-MOEA/D and the no-RA variant visit
many optimal solutions.

(b) The trajectories of auto-MOEA/D and the no-RA variant visit
few optimal solutions.

Fig. 16. STNs of auto-MOEA/D and two variants on the CRE22 (left) and CRE23 (right) problems. The variants reach the approximation
to the Pareto front.
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(a) The trajectories of auto-MOEA/D and the operators variant are
similar.

(b) The trajectories of auto-MOEA/D and the no-restart variant
share some nodes.

Fig. 17. STNs of auto-MOEA/D and the two variants on the CRE31 (left) and CRE22 (right) problem.

First of all, we comment on the overall differences among the STNs of the DASCMOP problems, Figure 14, and the
simulated and analytical real-world problems 15, 16 and 17. Unlikely the anytime HV performance that showed a similar
objective space behavior between the DASCMOP and CRE problems, we can see that the decision space behavior of the
DASCMOP STNs is more diverse when compared to the behavior of shown by the STNs for the real-world problems.
This finding demonstrates how essential it is to explore the decision space behavior of algorithms.

For the simulated MOON and MAZDA problem in Figures 15, we can see that the trajectories are similar, with
multiple shared nodes. That is, the trajectories of the STNs of the auto-MOEA/D and each variant overlap, visiting
similar regions in the decision space. We associate this behavior with the number of shared nodes for this problem
being high for all variants. Although we only showed the STNs of one pair, an identical trend occurs for all pairs of the
auto-MOEA/D variants for the MOON problem. We understand this is indicative that the features of this simulated
problem affect all MOEAs studied here in a similar fashion. The opposite happens for the MAZDA problem, where the
trajectories shown in the Figure visit unrelated areas of the decision space. For the pair selected, the trajectories do not
overlap, and the number of shared nodes is much smaller. However, we can see in Table 5 that there is no agreement
among the different variants in the metrics indicating a high impact of the problem difficulty on the search behavior of
the different variants exploring the problem differently.

Moving now to the analytical CRE problems in Figures 16 and 17. We highlight that the trajectories of all variants
for these problems overlap each other. Thus, we understand that the auto-MOEA/D variants visit similar regions in
the decision space. Although the number of shared nodes is high for most of the variants in these problems, we can
see that the variants are affected differently given the problem in question, indicating a contrasting set of features
among the problems. In terms of best Pareto optimal solutions, we can see that there are much more solutions in the
approximation to the Pareto front for the CRE22 problem than for the CRE23. We can see in Table 5 that an identical
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trend occurs for all pairs of the auto-MOEA/D variants for both problems. For the three objective problems, CRE31 and
CRE32 we can see that the number of Pareto optimal solutions reduce substantially.

8 CONCLUSION

This works defines a new methodology to investigate the effects of algorithmic components based on our previous
work [30] that takes into account the decision space dynamics, as well as the objective space dynamics of the components.
This methodology allows the user to investigate the impacts of the components of multiobjective algorithms in analytical
and simulated problems with constraints. We contrasted the behavior of these configurations in terms of how they
explore the decision space by comparing their Search Trajectory Networks (STNs), their population diversity, and how
they behave in the objective space by exploring the anytime performance effects in terms of HV values. This analysis
allowed us to identify the most influential components in the different problems we studied here.

Interestingly, the results shown in this paper differ from the ones found on our previous work. This is mainly because
the training method used in the original paper was using a set of constraints that were too hard for MOEA/D to deal
with. Since we wanted to improve the overall quality of the tuned MOEA/D in the hard set of problems we used a set
of constraint difficulty triples of the DASCMOP benchmark set. That lead to increments in the performance of the
tuned MOEA/D in the problems it was already performing well, but not affecting the performance in problems it had
difficulties with. Thus, we understand that the results and conclusions are not accidental, but dependent on the different
algorithm configuration selected.

We applied thismethodology the auto-MOEA/D, a tunedMOEA/D designed by the irace package, and the subsequently
derived variants that differ from this machine-designed MOEA by a single component. Our results showed that the
most potentially influential variants differ given the set of problems: (1) for the DASCMOP problems the update variant
showed more different behaviors in the objective and decision spaces; (2) the no-restart variant was more affected by
the features of MOON problem while the decomposition+pop. size variant was the one that was more affected by the
features of the MAZDA problem and (3) for the CRE family the variants that caused more changes in the decision space
exploration behavior are the aggregation function and the no-restart. However, it is still necessary to establish the
generalization of such results ans how can we extrapolate to characterize the behavior of components independently of
the scenarios observed.

We found that analysing the objective and the decision space simultaneously provides complementary information
about how algorithms behave as the search progresses. In addition, the decision space behavior analysis was able to
slightly contribute to the characterization of problems. For example, given how the trajectories of the STNs of the
auto-MOEA/D and each other variant for the MOON problem frequently overlap, thus this problem could be seen as a
multimodal problem with at least one funnel to optimal solutions; but, more work needs to be done to validate this.
Moreover, this finding demonstrates how essential it is to explore the decision space behavior of algorithms.

In summary, this study strengthens the view that characterizing the effects of MOEA/D algorithm components
could help in developing even more effective MOEAs. Taken together, these findings suggest a role for improving in
promoting the study of specific components to develop new and better components. We understand that our results are
of interest to the broad multiobjective evolutionary computation community.

One limitation of this methodology is that the search space of possible algorithm configurations is limited by the
choices of components and components parameters. However, with a careful selection of those, automatic composition
can be a powerful tool to explore this possibility space.
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