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1 Introduction

Multi-objective Optimization Problems (MOP)

are minimization† problems characterized by mul-

tiple, conflicting objective functions. It arises in

real world applications that require a compromise

among multiple objectives. The set of optimal

trade off solutions in the decision space is the

Pareto Set (PS), and the image of this set in the

objective space is the Pareto Front (PF). Find-

ing a good approximation of the Pareto Front is

a hard problem for which multiple Evolutionary

Algorithms have been proposed, 1) .

The Multi-Objective Evolutionary Algorithm

Based on Decomposition, (MOEA/D) 2) is an

effective algorithm for solving MOPs. The main

characteristic of MOEA/D is to decompose the

multi-objective optimization problem into a set

of single objective subproblems. It has been ob-

served that some subproblems require more atten-

tion than others, and take more effort to converge

to an optimal solution 3) wasting computational

effort by trying to improve solutions that are not

very promising 4) . This can be a critical issue in

large-scale MOP problems that require costly sim-

ulations 5) .

To address this issue, Resource Allocation (RA)

techniques have been proposed. They distribute

the computational effort to each subproblems dif-

ferently, based on an estimation of the relative im-

portance of each subproblem 3, 6, 7) . The estima-
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†or maximization

tion of subproblem importance is done by Priority

Functions.

In this work, we study Priority Functions to im-

prove the quality of Resource Allocation. Here, we

first report results of Priority Function based on

critical issues: Decision-Space Diversity (DS) 8, 9)

and Inverted Decision-Space Diversity (iDS) 9)

that are based on the diversity of subproblems and

their solutions on decision space, and the Relative

Improvement (R.I.) 6, 3) . that is based on how

much a solution objectives values improved over

iterations.

The results of our first experiment show that DS

largely improved the performance of MOEA/D,

leading to better Inverted Generational Distance

(IGD) and higher percentage of non-dominated so-

lutions on benchmark functions. To our surprise,

result is that assigning random priority also im-

proves MOEA/D performance, although not to the

degree of DS.

The Random Priority Function changes

MOEA/D, by making it possible to hold around

50% of the population, changing only the other

half of the population. Based on the surprising

results of this Priority Function we extend the

studies by making it possible to (indirectly)

control the percentage of the population that will

be hold We conduct a small experiment on this

more controlable Random Priority Function. The

results show that limiting the number of solutions

has a great positive impact on the performance of

MOEA/D in terms of IGD values.

2 Background

2.1 Priority functions

Priority functions are used in Resource Alloca-

tion (RA) to determine the preferences between

subproblems 10) . These functions take information

about the progress of the algorithm’s search, and



Algorithm 1 MOEA/D-SRA (Simple Resource

Allocation)

1: Initialize the weight vectors λi, the neighbor-

hood Bi, the priority value ui every subprob-

lem i = 1, ..., N .

2: while Termination criteria do

3: for i = 1 to N do ▷ Number of

subproblems

4: if rand() < ui then

5: Generate an offspring y for subprob-

lem i.

6: Update the population by y.

7: if Number of subproblems updated ≤ 3

then

8: (Update all subproblems, reset all ui to

1)

9: Evaluate the population, and update all ui

using a Priority Function.

Algorithm 2 Priority Function: Decision Space

Diversity (DS)

1: Input: Xt decision vectors of solutions; Xt−1,

decision vectors from the previous solutions; N,

the population size.

2: for i=1 to N do

3: u[i] = ||Xt
i - Xt−1

i ||

4: u = scale (u) ▷ between 0 and 1

5: Return u

guide the distribution of computational resources

among subproblems over iterations 11) .

We highlight the MOEA/D-GRA 3) , MOEA/D-

DRA 6) and the Two-Level Stable Matching-

Based Selection in MOEA/D 12) that uses Relative

Improvement (R.I.) as priority function. These

studies show that using Priority Functions for RA

can help MOEA/D performance.

3 MOEA/D-SRA

Algorithm 1 describes the MOEA/D with Sim-

ple Resource Allocation (MOEA/D-SRA) 8) . For

more information, see the work of Lavinas et. al 8)

.

Algorithm 3 Priority Function: Inverted Deci-

sion Space Diversity (iDS)

1: Input: Xt decision vectors of solutions; Xt−1,

decision vectors from the previous solutions; N,

the population size.

2: for i=1 to N do

3: u[i] = ||Xt
i - Xt−1

i ||

4: u = 1−scale (u) ▷ between 0 and 1

5: Return u

Algorithm 4 Priority Function: Relative Im-

provement

1: Input: Y t, objective function values from the

incumbent solutions; Y t−∆T , objective func-

tion values from incumbent solution of itera-

tion t−∆T , u from the previous ∆T iteration;

2: for i=1 to N do

3: u[i] = Y t[i]−Y t−1[i]
Y t[i]

4: if max(u) = 0 then

5: ∀u[i];u[i] = 1

6: else

7: u = u / (max(u) + 1.0× 10−50)

8: Return u

Algorithm 5 Priority Function: Random

1: Input: N, the population size.

2: for i=1 to N do

3: u[i] = value sampled uniformly from the

[0,1) interval

4: Return u

3.1 Decision Space Distance: DS and iDS

Priority Functions

The idea behind Decision Space Distance (DS) is

that by considering diversity as the Priority Func-

tion more resources are given to solutions that are

different to their parents, forcing MOEA/D to fo-

cus on less explored areas, and leading to higher

exploration of the decision space. Algorithm 2 de-

tails the calculation.

In the opposite fashion, the inverted Decision

Space Distance (iDS) gives more resources to so-

lutions that are similar to their parents, forcing

them to improve more. iDS is the inverse of DS,

prioritizing solutions that DS does not prioritize.



Algorithm 3 details the implementation.

3.2 Relative Improvement Priority Func-

tion

The Relative Improvement (R.I.) Priority Func-

tion allocates resources to subproblem based on

an estimation of problem difficulty. Subproblems

where the fitness of the incumbent solution has im-

proved further over the last ∆T iterations receive

higher priority under this function. Algorithm 4

details the implementation. For more information

about this priority function, see the works of Zhou,

Zhang and Nasir 3, 6, 12) .

3.3 Random Priority Functions

As a baseline for comparison we also define a

Random Priority Function. This function samples

the priority value ui from an uniform distribution.

This should, on average, allocate the same amount

of resources for all subproblems over the optimiza-

tion process. Algorithm 5 gives the details on its

implementation.

4 Experimental Results and Discussion

We compare MOEA/D-SRA, Algorithm 1, with

five different RA strategies: four RA using DS, i-

DS, Random and Relative Improvement Priority

Functions (R.I.); and MOEA/D-DE with no RA.

For comparison we use two function sets: the

DTLZ function set, with 100 dimensions and k =

dimensions - number of objectives +1, where the

number of objectives is 2; and the UF function set,

with 100 dimensions.

4.1 Experimental Parameters and Evalua-

tion

We use MOEA/D-DE standard parameters 13)

for each strategy: update size nr = 2, neighbor-

hood size T = 20, and the neighborhood search

probability δp = 0.9. The DE mutation opera-

tor value is F = 0.5. The Polynomial mutation

operator values are ηm = 20, pm = 0.03333333

and the lower and upper bounds are respectively

(−2, 2). The decomposition function is Simple-

Lattice Design (SLD), the scalar aggregation func-

tion is Weighted Sum (WS), the update strategy

is the Restricted Update Strategy and we per-

formed a simple linear scaling of the objectives to

[0, 1]. For every strategy/function pair we perform

21 repetitions with 30000 function evaluations and

population size N = 350.

We compare the results of the different strate-

gies based on their Inverted Generational Distance

(IGD) metrics (Lower values of IGD are better).

The Pairwise Wilcoxon Rank Sum Tests is used to

analyze differences in IGD values with confidence

α = 0.05 and with the Hommel adjustment method

for multiple comparisons.

4.2 Analysis of IGD Results

Table 1 shows that the methods with RA always

show better IGD values. The Pairwise Wilcoxon

test results in Table 2 indicate significant differ-

ences in IGD favoring the use of Resource Allo-

cation over MOEA/D-DE without RA, no matter

the Priority Function.

Among the Priority functions, the DS achieves

best IGD values in about 75% of all the func-

tions (see Table 1). R.I. achieved better results

on some functions, however our statistical analysis

indicated that the DS was superior to each of the

other methods (See Table 2). Our baseline, Ran-

dom Priority Function, had very good results, in

some cases even better than DS or R.I.

5 A Deeper Analysis of Random Prior-

ity Function

In Section 4.2, we showed that there is no statis-

tically difference between the R.I. priority function

and the Random priority function (Table 2). This

suggests that updating only part of the population

every iteration under MOEA/D might have a pos-

itive effect.

Right now, the Random Priority Function, sub-

section 3.3, selects around 50% of the population

at each iteration. The same overall behavior can

be achieve by setting a fix value of 0.5 as the Pri-

ority Function value. To study how much of the

population should be updated, we propose a new

experiment where we fix the priority values, ui, to:

0.10, 0.20, 0.40, 0.60, 0.80 and 1.00. We highlight



Table 1: IGD medians in parenthesis for MOEA/D-DE without Priority Functions, DS, iDS, Random and

R.I. The number in parenthesis is the standard deviation. The best value for each function is indicated

in Bold.

IGD MOEA/D-DE DS i-DS Random R.I.

UF1 0.425 (0.042) 0.146 (0.013) 0.326 (0.022) 0.250 (0.032) 0.223 (0.030)

UF2 0.130 (0.009) 0.104 (0.012) 0.104 (0.009) 0.103 (0.010) 0.093 (0.008)

UF3 0.301 (0.006) 0.274 (0.010) 0.283 (0.006) 0.278 (0.009) 0.281 (0.008)

UF4 0.112 (0.003) 0.108 (0.002) 0.111 (0.003) 0.109 (0.003) 0.107 (0.003)

UF5 2.163 (0.060) 1.333 (0.106) 1.923 (0.093) 1.591 (0.086) 1.551 (0.103)

UF6 0.408(0.054) 0.177 (0.042) 0.332 (0.049) 0.250 (0.039) 0.236 (0.033)

UF7 0.392 (0.067) 0.141 (0.015) 0.332 (0.034) 0.231 (0.039) 0.208 (0.034)

UF8 0.380 (0.028) 0.261 (0.010) 0.303 (0.014) 0.278 (0.013) 0.282 (0.013)

UF9 0.521 (0.014) 0.440 (0.0154) 0.476 (0.015) 0.475 (0.013) 0.474 (0.015)

UF10 4.105 (0.153) 2.97 (0.216) 3.788 (0.179) 3.24 (0.189) 3.094 (0.273)

DTLZ1 411.5 (157.1) 387.8 (95.08) 564.4 (112.1) 301.7 (123.0) 257.8 (99.73)

DTLZ2 0.309 (0.027) 0.140 (0.019) 0.218 (0.035) 0.187 (0.022) 0.179 (0.017)

DTLZ3 1409 (300.2) 1006 (318.0) 1440 (346.1) 801.6 (225.3) 245.4 (380.5)

DTLZ4 0.404 (0.071) 0.131 (0.034) 0.263 (0.050) 0.206 (0.029) 0.230 (0.102)

DTLZ5 0.326 (0.027) 0.148 (0.020) 0.224 (0.034) 0.186 (0.020) 0.179 (0.019)

DTLZ6 29.23 (2.814) 0.096 (0.777) 23.29 (1.267) 16.68 (2.663) 16.32 (2.586)

DTLZ7 3.213 (0.353) 0.287 (0.222) 2.229 (0.244) 1.719 (0.213) 0.783 (0.208)

Table 2: Statistical analysis of the IGD difference between the methods: MOEA/D-DE without Priority

Functions, DS, iDS, Random and R.I; paired on the benchmark functions, using the Pairwise Wilcoxon

Rank Sum test. “←” indicates superiority of the row method, while “↑” indicates superiority of the

column method. “≃” indicates no statistical difference.

DS iDS R.I. Random MOEA/D-DE

DS - 1.3e-12 ← 1.1e-06 ← 5.9e-08 ← < 2e-16 ←
iDS 1.3e-12 ↑ - 0.00078 ↑ 0.00172 ↑ 9.0e-05 ←
R.I. 1.1e-06 ↑ 0.00078 ← - 0.41140 ≃ 1.0e-08 ←
Random 5.9e-08 ↑ 0.00172 ← 0.41140 ≃ - 1.0e-08 ←
MOEA/D-DE < 2e-16 ↑ 9.0e-05 ↑ 1.0e-08 ↑ 1.0e-08 ↑ -

that with lower values, such as 0.10 and 0.20, the

algorithm displays a more conservative behavior,

updating around 10% and 20% of the population,

respectively. On the other hand, the algorithm dis-

plays a more aggressive behavior with higher val-

ues, such as 0.60 and 0.80 (updating 60% and 80%

of the population, respectively) Note that when

the fix value is equal to 1.00, all subproblems are

selected to be updated, therefore, this case simply

reproduces the standard MOEA/D-DE.

We use the same experiments parameters and

evaluation methods as in Section 4.1. We consider

only UF10 and DTLZ7 functions.

5.1 IGD Results

Table 3 and Figure 1 show that the by updat-

ing only a small fraction of the solutions improves

the performance of MOEA/D in terms of IGD val-

ues. That is, if we only update around 10% of the

population leaving around 90% of the population
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Fig. 1: Box-plot of IGD values of all threshold methods on two functions.
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Fig. 2: Pareto Front of all threshold Priority Functions on UF10.



0.2

0.4

0.6

0.00 0.25 0.50 0.75

f1

f2

Strategy

10%

20%

40%

60%

80%

100%
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Table 3: IGD medians in parenthesis for every Threshold Priority Function. The number in parenthesis

is the standard deviation. The best value for each function is indicated in Bold. Then, it shows the

proportion of Non-dominated: Median values and standard deviation (in parenthesis) of non-dominated

solutions on UF10 and DTLZ7 benchmarks.

IGD 0.10 0.20 0.40 0.60 0.80 1.00

UF10 2.068 (0.338) 2.208 (0.330) 2.588 (0.234) 2.856 (0.236) 3.096 (0.228) 3.441 (0.181)

DTLZ7 0.411 (0.209) 0.867 (0.472) 2.256 (0.501) 2.946 (0.387) 3.367 (0.491) 3.798 (0.347)

Proportion 0.10 0.20 0.40 0.60 0.80 1.00

UF10 96% (3%) 93% (9%) 88% (6%) 80% (6%) 71% (7%) 44% (7%)

DTLZ7 90% (10%) 64% (8%) 38% (10%) 28% (7%) 23% (10%) 19% (6%)

unchanged, the algorithm performs the best. The

same trend happens with the proportion of non-

dominated solutions.

The Pairwise Wilcoxon test results indicate sig-

nificant differences in IGD favoring the idea of up-

dating only small subgroups of the whole popu-

lation. In a more concrete way, the results indi-

cate that updating 10% or 20% of the population

is better than updating 90% or 100% of the popula-

tion. Figures 2 and 3 show example of the achieved

Pareto Fronts in UF10 and DTLZ7.

6 Conclusion

In this work, we studied different ideas of Pri-

ority Functions, those based on metrics (DS, R.I.)

and those that have give the same priority to all

subproblems. Both ideas have their merits, since

for some problems, using metrics had better IGD

results while for other problems using metrics had

worse IGD results.Although both groups are based

on divergent strategies in terms of inspiration, all



of them limit the number of solutions of the pop-

ulation that are updated from a iteration to the

next. We recall the title of this work ”Resource

Allocation in MOEA/D: What is important?” and

we understand that holding part of the population

unchanged and only updating a small subpopula-

tion seems to be of great importance. This goes

some way towards enhancing our understanding of

Resource Allocation in MOEA/D.

We understand that the behavior demonstrated

by in this study MOEA/D with Priority Functions

is similar to the behavior of MOEA/D with the

external archive population. That is because by

using the external archive, MOEA/D is able to

maintain the non-dominated solutions found dur-

ing the search while by using Priority Functions

MOEA/D is also able to maintain non-dominated

solutions, , since there is a limit of solutions that

can be replaced from a solution to the next. In

contrast, MOEA/D benefits better from Resource

Allocation techniques since the non-dominated so-

lutions are still able to influence the search while

having no extra computational cost (there is no

need to store two populations - the main one and

the one from the external archive).

Also, MOEA/D with Priority Functions might

be interpreted as a steady-state MOEA/D. There

is because MOEA/D with Priority Function limits

the number of solutions that are changed between

iteration while in any steady state evolutionary al-

gorithms, only a few (mostly one or two) solutions

of the a population are replaced 14) . This relation-

ship becomes even clearer when we consider the

analysis of Section 5, where we can see that there is

a well-defined trend between holding smaller frac-

tions of the population and the improvement of

MOEA/D.

The small number of functions investigated does

not allow to a more general and definitive conclu-

sion, however, an extensive analyses would be a

fruitful area for further work.
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